Namespaces
Variants
Actions

Difference between revisions of "Critical function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A statistic for which the values are the conditional probabilities of the deviations from the hypothesis being tested, given the value of an observed result. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c0270601.png" /> be a random variable with values in a sample space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c0270602.png" />, the distribution of which belongs to a family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c0270603.png" />, and suppose one is testing the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c0270604.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c0270605.png" />, against the alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c0270606.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c0270607.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c0270608.png" /> be a measurable function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c0270609.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c02706010.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c02706011.png" />. If the hypothesis is being tested by a randomized test, according to which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c02706012.png" /> is rejected with probability <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c02706013.png" /> if the experiment reveals that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c02706014.png" />, and accepted with probability <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c02706015.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c02706016.png" /> is called the critical function of the test. In setting up a non-randomized test, one chooses the critical function in such a way that it assumes only two values, 0 and 1. Hence it is the characteristic function of a certain set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c02706017.png" />, called the critical region of the test: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c02706018.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c02706019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c02706020.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027060/c02706021.png" />.
+
<!--
 +
c0270601.png
 +
$#A+1 = 21 n = 0
 +
$#C+1 = 21 : ~/encyclopedia/old_files/data/C027/C.0207060 Critical function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A statistic for which the values are the conditional probabilities of the deviations from the hypothesis being tested, given the value of an observed result. Let
 +
be a random variable with values in a sample space   ( \mathfrak X , \mathfrak B ) ,  
 +
the distribution of which belongs to a family $  \{ {P _  \theta  } : {\theta \in \Theta } \} $,  
 +
and suppose one is testing the hypothesis $  H _ {0} $:  
 +
$  \theta \in \Theta _ {0} \subset  \Theta $,  
 +
against the alternative   H _ {1} :  
 +
$  \theta \in \Theta _ {1} = \Theta \setminus  \Theta _ {0} $.  
 +
Let   \phi ( \cdot )
 +
be a measurable function on   \mathfrak X
 +
such that 0 \leq  \phi ( x) \leq  1 $
 +
for all   x \in \mathfrak X .  
 +
If the hypothesis is being tested by a randomized test, according to which $  H _ {0} $
 +
is rejected with probability   \phi ( x)
 +
if the experiment reveals that $  X = x $,  
 +
and accepted with probability   1 - \phi ( x) ,  
 +
then   \phi ( \cdot )
 +
is called the critical function of the test. In setting up a non-randomized test, one chooses the critical function in such a way that it assumes only two values, 0 and 1. Hence it is the characteristic function of a certain set   K \in \mathfrak B ,  
 +
called the critical region of the test: $  \phi ( x) = 1 $
 +
if   x \in K ,  
 +
$  \phi ( x) = 0 $
 +
if   x \notin K .
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.L. Lehmann,  "Testing statistical hypotheses" , Wiley  (1959)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.L. Lehmann,  "Testing statistical hypotheses" , Wiley  (1959)</TD></TR></table>

Latest revision as of 17:31, 5 June 2020


A statistic for which the values are the conditional probabilities of the deviations from the hypothesis being tested, given the value of an observed result. Let X be a random variable with values in a sample space ( \mathfrak X , \mathfrak B ) , the distribution of which belongs to a family \{ {P _ \theta } : {\theta \in \Theta } \} , and suppose one is testing the hypothesis H _ {0} : \theta \in \Theta _ {0} \subset \Theta , against the alternative H _ {1} : \theta \in \Theta _ {1} = \Theta \setminus \Theta _ {0} . Let \phi ( \cdot ) be a measurable function on \mathfrak X such that 0 \leq \phi ( x) \leq 1 for all x \in \mathfrak X . If the hypothesis is being tested by a randomized test, according to which H _ {0} is rejected with probability \phi ( x) if the experiment reveals that X = x , and accepted with probability 1 - \phi ( x) , then \phi ( \cdot ) is called the critical function of the test. In setting up a non-randomized test, one chooses the critical function in such a way that it assumes only two values, 0 and 1. Hence it is the characteristic function of a certain set K \in \mathfrak B , called the critical region of the test: \phi ( x) = 1 if x \in K , \phi ( x) = 0 if x \notin K .

References

[1] E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1959)
How to Cite This Entry:
Critical function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Critical_function&oldid=13465
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article