|
|
Line 1: |
Line 1: |
− | One of the numerical characteristics of a function of several variables which can be considered as a multi-dimensional analogue of the [[Variation of a function|variation of a function]] of one variable. Let a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p0727201.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p0727202.png" /> be given on an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p0727203.png" />-dimensional parallelopipedon
| + | {{MSC|26B30|26A45}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p0727204.png" /></td> </tr></table>
| + | [[Category:Analysis]] |
| | | |
− | and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p0727205.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p0727206.png" />, be a subdivision of the segment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p0727207.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p0727208.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p0727209.png" /> equal segments by points
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272010.png" /></td> </tr></table>
| + | A generalization to functions of several variables of the [[Variation of a function]] of one variable, proposed by Pierpont in {{Cite|Pi}}. However the modern theory of functions of bounded variation uses a different generalization (see [[Function of bounded variation]] and [[Variation of a function]]). Therefore the Pierpont variation is seldomly used nowadays. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272011.png" /></td> </tr></table>
| + | Consider a rectangle $R:= [a_1, b_1]\times \ldots \times [a_n, b_n]\subset \mathbb R^n$ and let |
| + | $\Pi_k^m$ the set of points $a_k = a_k^0 < \ldots < a_k^{m+1}$ which subdivides $[a_k, b_k]$ in $m$ segments of equal length. These subdivisions generate a subdivision $\Sigma^m$ of the rectangle $R$ into $2^m$ closed rectangles $R^m_1, \ldots, R^m_{2^m}$ having equal side lengths. |
| | | |
− | These subdivisions generate a subdivision
| + | '''Definition''' |
| + | The Pierpont variation of a function $f:R\to \mathbb R$ is defined as |
| + | \[ |
| + | \sup_m\; \frac{1}{m^{n-1}} \sum_{i=1}^{2^m} \omega \left(f, R^m_i\right) |
| + | \] |
| + | where $\omega (f, E)$ denotes the oscillation of the function $f$ over the set $E$, namely |
| + | \[ |
| + | \omega (f, E) := \sup_E\; f - \inf_E\; f\, . |
| + | \] |
| + | If the Pierpont variation of $f$ is finite then one says that $f$ has bounded (finite) Pierpont variation. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272012.png" /></td> </tr></table>
| + | If a function $f$ has bounded [[Arzela variation]] then it has also bounded Pierpont variation. |
| | | |
− | of the parallelopipedon <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272013.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272014.png" /> parallelopipeda <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272015.png" /> with edges parallel to the coordinate axes.
| |
− |
| |
− | Let
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272016.png" /></td> </tr></table>
| |
− |
| |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272017.png" /> is the oscillation of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272018.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272019.png" /> (cf. [[Oscillation of a function|Oscillation of a function]]). Then
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272020.png" /></td> </tr></table>
| |
− |
| |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272021.png" />, then the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272022.png" /> is said to be of bounded (finite) Pierpont variation on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272023.png" />, and the class of all such functions is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272024.png" />. This definition was suggested by J. Pierpont [[#References|[1]]]. The class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272025.png" /> contains as a subset the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272026.png" /> of all functions of bounded [[Arzelà variation|Arzelà variation]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072720/p07272027.png" />.
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Pierpont, "Lectures on the theory of functions of real variables" , '''1''' , Dover, reprint (1959)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Hahn, "Reellen Funktionen" , '''1''' , Chelsea, reprint (1948)</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Ha}}|| H. Hahn, "Theorie der reellen Funktionen" , '''1''' , Springer (1921). |
| + | |- |
| + | |valign="top"|{{Ref|Pi}}|| J. Pierpont, "Lectures on the theory of functions of real variables" , '''1''' , Dover (1959). |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 26B30 Secondary: 26A45 [MSN][ZBL]
A generalization to functions of several variables of the Variation of a function of one variable, proposed by Pierpont in [Pi]. However the modern theory of functions of bounded variation uses a different generalization (see Function of bounded variation and Variation of a function). Therefore the Pierpont variation is seldomly used nowadays.
Consider a rectangle $R:= [a_1, b_1]\times \ldots \times [a_n, b_n]\subset \mathbb R^n$ and let
$\Pi_k^m$ the set of points $a_k = a_k^0 < \ldots < a_k^{m+1}$ which subdivides $[a_k, b_k]$ in $m$ segments of equal length. These subdivisions generate a subdivision $\Sigma^m$ of the rectangle $R$ into $2^m$ closed rectangles $R^m_1, \ldots, R^m_{2^m}$ having equal side lengths.
Definition
The Pierpont variation of a function $f:R\to \mathbb R$ is defined as
\[
\sup_m\; \frac{1}{m^{n-1}} \sum_{i=1}^{2^m} \omega \left(f, R^m_i\right)
\]
where $\omega (f, E)$ denotes the oscillation of the function $f$ over the set $E$, namely
\[
\omega (f, E) := \sup_E\; f - \inf_E\; f\, .
\]
If the Pierpont variation of $f$ is finite then one says that $f$ has bounded (finite) Pierpont variation.
If a function $f$ has bounded Arzela variation then it has also bounded Pierpont variation.
References
[Ha] |
H. Hahn, "Theorie der reellen Funktionen" , 1 , Springer (1921).
|
[Pi] |
J. Pierpont, "Lectures on the theory of functions of real variables" , 1 , Dover (1959).
|