Namespaces
Variants
Actions

Difference between revisions of "Harmonizable random process"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A complex-valued random function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h0465901.png" /> of a real parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h0465902.png" /> which may be represented as a [[Stochastic integral|stochastic integral]]:
+
<!--
 +
h0465901.png
 +
$#A+1 = 44 n = 0
 +
$#C+1 = 44 : ~/encyclopedia/old_files/data/H046/H.0406590 Harmonizable random process
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h0465903.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h0465904.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h0465905.png" />, is a random process. The increments <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h0465906.png" /> in (*) define random "amplitudes" <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h0465907.png" /> and  "phases"  <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h0465908.png" /> of elementary vibrations of the form
+
A complex-valued random function  $  X = X( t) $
 +
of a real parameter $ t $
 +
which may be represented as a [[Stochastic integral|stochastic integral]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h0465909.png" /></td> </tr></table>
+
$$ \tag{* }
 +
X ( t)  = \int\limits _ {- \infty } ^  \infty 
 +
e ^ {i \lambda t }  d \Phi ( \lambda )  = \
 +
\lim\limits  \sum _ { k }
 +
e ^ {i \lambda t }
 +
\Delta _ {k} \Phi ( \lambda ),
 +
$$
  
of frequencies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659011.png" />, the superposition of which yields, in the limit, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659012.png" />. The (mean-square) limit in the representation (*) is taken along a sequence of successively-finer subdivisions of the line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659013.png" /> into intervals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659014.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659015.png" />. It is usually assumed that
+
where  $  \Phi ( \lambda ) $,
 +
$  - \infty < \lambda < \infty $,  
 +
is a random process. The increments  $  \Delta _ {k} \Phi ( \lambda ) = \Phi ( \lambda _ {k+} 1 ) - \Phi ( \lambda _ {k} ) $
 +
in (*) define random  "amplitudes"   $  A _ {k} = | \Delta _ {k} \Phi ( \lambda ) | $
 +
and  "phases"   $  \theta _ {k} = \mathop{\rm arg}  \Delta _ {k} \Phi ( \lambda ) $
 +
of elementary vibrations of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659016.png" /></td> </tr></table>
+
$$
 +
Ae ^ {i ( \lambda t + \theta ) }  = \
 +
e ^ {i \lambda t }
 +
\Delta _ {k} \Phi ( \lambda )
 +
$$
  
as a function of the sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659017.png" /> in the plane, defines a complex measure of bounded variation; in this case the corresponding process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659019.png" /> (or, more exactly, the corresponding random measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659020.png" />), is unambiguously defined by the process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659022.png" />, itself:
+
of frequencies  $  \lambda $,
 +
$  \lambda _ {k} \leq  \lambda \leq  \lambda _ {k+} 1 $,
 +
the superposition of which yields, in the limit, $  X = X( t) $.  
 +
The (mean-square) limit in the representation (*) is taken along a sequence of successively-finer subdivisions of the line  $  - \infty < \lambda < \infty $
 +
into intervals  $  \Delta _ {k} = ( \lambda _ {k,\ } \lambda _ {k+} 1 ) $
 +
with  $  \max _ {k} ( \lambda _ {k + 1 }  - \lambda _ {k} ) \rightarrow 0 $.  
 +
It is usually assumed that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659023.png" /></td> </tr></table>
+
$$
 +
F ( \Delta _ {1} \times \Delta _ {2} )  = \
 +
{\mathsf E} ( \Delta _ {1} \Phi \cdot \Delta _ {2} \overline \Phi \; ) ,
 +
$$
  
for any interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659024.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659025.png" />, and
+
as a function of the sets  $  \Delta _ {1} \times \Delta _ {2} $
 +
in the plane, defines a complex measure of bounded variation; in this case the corresponding process  $  \Phi ( \lambda ) $,
 +
$  - \infty < \lambda < \infty $(
 +
or, more exactly, the corresponding random measure  $  d \Phi ( \lambda ) $),
 +
is unambiguously defined by the process  $  X( t) $,
 +
$  - \infty < t < \infty $,
 +
itself:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659026.png" /></td> </tr></table>
+
$$
 +
\Delta \Phi ( \lambda )  = \
 +
\lim\limits _ {T \rightarrow \infty } \
 +
{
 +
\frac{1}{2T }
 +
}
 +
\int\limits _ { - } T ^ { T }
  
for any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659028.png" />. A random process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659030.png" />, is harmonizable if and only if its covariance is representable in the form
+
\frac{e ^ {- i \lambda _ {2} t } - e ^ {- i \lambda _ {1} t } }{- it }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659031.png" /></td> </tr></table>
+
X ( t)  dt
 +
$$
 +
 
 +
for any interval  $  \Delta = ( \lambda _ {1} , \lambda _ {2} ) $
 +
such that  $  d \Phi ( \lambda _ {1} ) = d \Phi ( \lambda _ {2} ) = 0 $,
 +
and
 +
 
 +
$$
 +
\Phi ( \lambda )  = \
 +
\lim\limits _ {T \rightarrow \infty } \
 +
\int\limits _ { - } T ^ { T }
 +
e ^ {- i \lambda t }
 +
X ( t)  dt
 +
$$
 +
 
 +
for any point  $  \lambda $,
 +
- \infty < \lambda < \infty $.  
 +
A random process  $  X( t) $,
 +
$  - \infty < t < \infty $,
 +
is harmonizable if and only if its covariance is representable in the form
 +
 
 +
$$
 +
B ( s, t)  = \
 +
\int\limits _ {- \infty } ^  \infty 
 +
\int\limits _ {- \infty } ^  \infty 
 +
e ^ {i ( \lambda s - \mu t) }
 +
F ( d \lambda \times d \mu ).
 +
$$
  
 
===Examples of harmonizable random processes.===
 
===Examples of harmonizable random processes.===
 
  
 
1) A modulated stationary random process. If
 
1) A modulated stationary random process. If
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659032.png" /></td> </tr></table>
+
$$
 +
X _ {0} ( t)  = \int\limits _ {- \infty } ^  \infty 
 +
e ^ {i \lambda t }  d \Phi _ {0} ( t)
 +
$$
  
 
is a stationary random process, a process of the form
 
is a stationary random process, a process of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659033.png" /></td> </tr></table>
+
$$
 +
X ( t)  = c ( t) X _ {0} ( t),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659034.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659035.png" /> is a measure on the line, is usually no longer stationary, but will be harmonizable:
+
where $  c( t) = \int _ {- \infty }  ^  \infty  e ^ {i \lambda t } m ( d \lambda ) $,  
 +
where $  m ( d \lambda ) $
 +
is a measure on the line, is usually no longer stationary, but will be harmonizable:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659036.png" /></td> </tr></table>
+
$$
 +
X ( t)  = \int\limits _ {- \infty } ^  \infty 
 +
e ^ {i \lambda t }  d \Phi ( \lambda ),
 +
$$
  
where the random measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659037.png" /> is defined by the formula
+
where the random measure $  d \Phi ( \lambda ) $
 +
is defined by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659038.png" /></td> </tr></table>
+
$$
 +
\Delta \Phi ( \lambda )  = \
 +
\int\limits _  \Delta
 +
m ( \Delta - \lambda ) \
 +
d \Phi _ {0} ( \lambda ).
 +
$$
  
 
2) A process defined by sliding summation (or moving averages)
 
2) A process defined by sliding summation (or moving averages)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659039.png" /></td> </tr></table>
+
$$
 +
X ( t)  = \int\limits _ {- \infty } ^  \infty 
 +
c ( t - s)  dZ ( s),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659040.png" /> is some random measure on the line and the weight function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659041.png" /> is of the same type as above:
+
where $  d Z( t) $
 +
is some random measure on the line and the weight function $  c( t) $
 +
is of the same type as above:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659042.png" /></td> </tr></table>
+
$$
 +
c ( t)  = \int\limits _ {- \infty } ^  \infty 
 +
e ^ {i \lambda t }
 +
m ( d \lambda ) .
 +
$$
  
 
In this case
 
In this case
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659043.png" /></td> </tr></table>
+
$$
 +
X ( t)  = \int\limits _ {- \infty } ^  \infty 
 +
e ^ {i \lambda t }  d \Phi ( \lambda ),
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046590/h04659044.png" /></td> </tr></table>
+
$$
 +
\Delta \Phi ( \lambda )  = \
 +
\int\limits _  \Delta  \left [
 +
\int\limits _ {- \infty } ^  \infty 
 +
e ^ {- i \lambda t } \
 +
dZ ( t) \right ]
 +
m ( d \lambda ).
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M. Loève,  "Probability theory" , '''2''' , Springer  (1978)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M. Loève,  "Probability theory" , '''2''' , Springer  (1978)</TD></TR></table>

Latest revision as of 19:43, 5 June 2020


A complex-valued random function $ X = X( t) $ of a real parameter $ t $ which may be represented as a stochastic integral:

$$ \tag{* } X ( t) = \int\limits _ {- \infty } ^ \infty e ^ {i \lambda t } d \Phi ( \lambda ) = \ \lim\limits \sum _ { k } e ^ {i \lambda t } \Delta _ {k} \Phi ( \lambda ), $$

where $ \Phi ( \lambda ) $, $ - \infty < \lambda < \infty $, is a random process. The increments $ \Delta _ {k} \Phi ( \lambda ) = \Phi ( \lambda _ {k+} 1 ) - \Phi ( \lambda _ {k} ) $ in (*) define random "amplitudes" $ A _ {k} = | \Delta _ {k} \Phi ( \lambda ) | $ and "phases" $ \theta _ {k} = \mathop{\rm arg} \Delta _ {k} \Phi ( \lambda ) $ of elementary vibrations of the form

$$ Ae ^ {i ( \lambda t + \theta ) } = \ e ^ {i \lambda t } \Delta _ {k} \Phi ( \lambda ) $$

of frequencies $ \lambda $, $ \lambda _ {k} \leq \lambda \leq \lambda _ {k+} 1 $, the superposition of which yields, in the limit, $ X = X( t) $. The (mean-square) limit in the representation (*) is taken along a sequence of successively-finer subdivisions of the line $ - \infty < \lambda < \infty $ into intervals $ \Delta _ {k} = ( \lambda _ {k,\ } \lambda _ {k+} 1 ) $ with $ \max _ {k} ( \lambda _ {k + 1 } - \lambda _ {k} ) \rightarrow 0 $. It is usually assumed that

$$ F ( \Delta _ {1} \times \Delta _ {2} ) = \ {\mathsf E} ( \Delta _ {1} \Phi \cdot \Delta _ {2} \overline \Phi \; ) , $$

as a function of the sets $ \Delta _ {1} \times \Delta _ {2} $ in the plane, defines a complex measure of bounded variation; in this case the corresponding process $ \Phi ( \lambda ) $, $ - \infty < \lambda < \infty $( or, more exactly, the corresponding random measure $ d \Phi ( \lambda ) $), is unambiguously defined by the process $ X( t) $, $ - \infty < t < \infty $, itself:

$$ \Delta \Phi ( \lambda ) = \ \lim\limits _ {T \rightarrow \infty } \ { \frac{1}{2T } } \int\limits _ { - } T ^ { T } \frac{e ^ {- i \lambda _ {2} t } - e ^ {- i \lambda _ {1} t } }{- it } X ( t) dt $$

for any interval $ \Delta = ( \lambda _ {1} , \lambda _ {2} ) $ such that $ d \Phi ( \lambda _ {1} ) = d \Phi ( \lambda _ {2} ) = 0 $, and

$$ \Phi ( \lambda ) = \ \lim\limits _ {T \rightarrow \infty } \ \int\limits _ { - } T ^ { T } e ^ {- i \lambda t } X ( t) dt $$

for any point $ \lambda $, $ - \infty < \lambda < \infty $. A random process $ X( t) $, $ - \infty < t < \infty $, is harmonizable if and only if its covariance is representable in the form

$$ B ( s, t) = \ \int\limits _ {- \infty } ^ \infty \int\limits _ {- \infty } ^ \infty e ^ {i ( \lambda s - \mu t) } F ( d \lambda \times d \mu ). $$

Examples of harmonizable random processes.

1) A modulated stationary random process. If

$$ X _ {0} ( t) = \int\limits _ {- \infty } ^ \infty e ^ {i \lambda t } d \Phi _ {0} ( t) $$

is a stationary random process, a process of the form

$$ X ( t) = c ( t) X _ {0} ( t), $$

where $ c( t) = \int _ {- \infty } ^ \infty e ^ {i \lambda t } m ( d \lambda ) $, where $ m ( d \lambda ) $ is a measure on the line, is usually no longer stationary, but will be harmonizable:

$$ X ( t) = \int\limits _ {- \infty } ^ \infty e ^ {i \lambda t } d \Phi ( \lambda ), $$

where the random measure $ d \Phi ( \lambda ) $ is defined by the formula

$$ \Delta \Phi ( \lambda ) = \ \int\limits _ \Delta m ( \Delta - \lambda ) \ d \Phi _ {0} ( \lambda ). $$

2) A process defined by sliding summation (or moving averages)

$$ X ( t) = \int\limits _ {- \infty } ^ \infty c ( t - s) dZ ( s), $$

where $ d Z( t) $ is some random measure on the line and the weight function $ c( t) $ is of the same type as above:

$$ c ( t) = \int\limits _ {- \infty } ^ \infty e ^ {i \lambda t } m ( d \lambda ) . $$

In this case

$$ X ( t) = \int\limits _ {- \infty } ^ \infty e ^ {i \lambda t } d \Phi ( \lambda ), $$

where

$$ \Delta \Phi ( \lambda ) = \ \int\limits _ \Delta \left [ \int\limits _ {- \infty } ^ \infty e ^ {- i \lambda t } \ dZ ( t) \right ] m ( d \lambda ). $$

References

[1] M. Loève, "Probability theory" , 2 , Springer (1978)
How to Cite This Entry:
Harmonizable random process. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Harmonizable_random_process&oldid=13407
This article was adapted from an original article by Yu.A. Rozanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article