Namespaces
Variants
Actions

Difference between revisions of "Multi-valued representation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''of a connected topological group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m0652501.png" />''
+
<!--
 +
m0652501.png
 +
$#A+1 = 22 n = 0
 +
$#C+1 = 22 : ~/encyclopedia/old_files/data/M065/M.0605250 Multi\AAhvalued representation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
An ordinary representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m0652502.png" /> of a connected topological group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m0652503.png" /> (cf. [[Representation of a topological group|Representation of a topological group]]) such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m0652504.png" /> is isomorphic (as a topological group) to a quotient group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m0652505.png" /> relative to a discrete normal subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m0652506.png" /> which is not contained in the kernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m0652507.png" />. A multi-valued representation is called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m0652509.png" />-valued if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m06525010.png" /> contains exactly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m06525011.png" /> elements. By identifying the elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m06525012.png" /> with the elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m06525013.png" /> one obtains for the sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m06525014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m06525015.png" />, the relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m06525016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m06525017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m06525018.png" />. Multi-valued representations of connected, locally path-connected topological groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m06525019.png" /> exist only for non-simply-connected groups. The most important example of a multi-valued representation is the [[Spinor representation|spinor representation]] of the complex orthogonal group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m06525020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m06525021.png" />; this representation is a two-valued representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m06525022.png" /> and is determined by a faithful representation of the universal covering group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m06525023.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
''of a connected topological group  $  G $''
 +
 
 +
An ordinary representation $  \pi $
 +
of a connected topological group $  G _ {1} $(
 +
cf. [[Representation of a topological group|Representation of a topological group]]) such that $  G $
 +
is isomorphic (as a topological group) to a quotient group of $  G _ {1} $
 +
relative to a discrete normal subgroup $  N $
 +
which is not contained in the kernel of $  \pi $.  
 +
A multi-valued representation is called $  n $-
 +
valued if $  \pi ( N) $
 +
contains exactly $  n $
 +
elements. By identifying the elements of $  G $
 +
with the elements of $  G _ {1} / N $
 +
one obtains for the sets $  \pi ( g) $,  
 +
$  g \in G = G _ {1} / N $,  
 +
the relations $  \pi ( e) \ni 1 $,
 +
$  \pi ( g _ {1} g _ {2} ) = \pi ( g _ {1} ) \pi ( g _ {2} ) $,  
 +
$  g _ {1} , g _ {2} \in G $.  
 +
Multi-valued representations of connected, locally path-connected topological groups $  G $
 +
exist only for non-simply-connected groups. The most important example of a multi-valued representation is the [[Spinor representation|spinor representation]] of the complex orthogonal group $  \mathop{\rm SO} ( n , \mathbf C ) $,  
 +
$  n \geq  2 $;  
 +
this representation is a two-valued representation of $  \mathop{\rm SO} ( n , \mathbf C ) $
 +
and is determined by a faithful representation of the universal covering group of $  \mathop{\rm SO} ( n , \mathbf C ) $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Kirillov,  "Elements of the theory of representations" , Springer  (1976)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M.A. Naimark,  "Theory of group representations" , Springer  (1982)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Kirillov,  "Elements of the theory of representations" , Springer  (1976)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M.A. Naimark,  "Theory of group representations" , Springer  (1982)  (Translated from Russian)</TD></TR></table>

Latest revision as of 08:01, 6 June 2020


of a connected topological group $ G $

An ordinary representation $ \pi $ of a connected topological group $ G _ {1} $( cf. Representation of a topological group) such that $ G $ is isomorphic (as a topological group) to a quotient group of $ G _ {1} $ relative to a discrete normal subgroup $ N $ which is not contained in the kernel of $ \pi $. A multi-valued representation is called $ n $- valued if $ \pi ( N) $ contains exactly $ n $ elements. By identifying the elements of $ G $ with the elements of $ G _ {1} / N $ one obtains for the sets $ \pi ( g) $, $ g \in G = G _ {1} / N $, the relations $ \pi ( e) \ni 1 $, $ \pi ( g _ {1} g _ {2} ) = \pi ( g _ {1} ) \pi ( g _ {2} ) $, $ g _ {1} , g _ {2} \in G $. Multi-valued representations of connected, locally path-connected topological groups $ G $ exist only for non-simply-connected groups. The most important example of a multi-valued representation is the spinor representation of the complex orthogonal group $ \mathop{\rm SO} ( n , \mathbf C ) $, $ n \geq 2 $; this representation is a two-valued representation of $ \mathop{\rm SO} ( n , \mathbf C ) $ and is determined by a faithful representation of the universal covering group of $ \mathop{\rm SO} ( n , \mathbf C ) $.

References

[1] A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) (Translated from Russian)
[2] M.A. Naimark, "Theory of group representations" , Springer (1982) (Translated from Russian)
How to Cite This Entry:
Multi-valued representation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multi-valued_representation&oldid=12923
This article was adapted from an original article by A.I. Shtern (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article