Namespaces
Variants
Actions

Difference between revisions of "Potential field"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
p0741001.png
 +
$#A+1 = 39 n = 0
 +
$#C+1 = 39 : ~/encyclopedia/old_files/data/P074/P.0704100 Potential field,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''gradient field''
 
''gradient field''
  
The vector field generated by the gradients of a scalar function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p0741001.png" /> in several variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p0741002.png" /> which belong to some domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p0741003.png" /> in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p0741004.png" />-dimensional space. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p0741005.png" /> is called the scalar potential (potential function) of this field. A potential field is completely integrable over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p0741006.png" />: The [[Pfaffian equation|Pfaffian equation]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p0741007.png" /> has the level lines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p0741008.png" /> or the level surfaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p0741009.png" /> of the potential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410010.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410011.png" />-dimensional integral manifolds. Any regular covariant field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410012.png" /> that is completely integrable over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410013.png" /> is obtained by multiplying the potential field by a scalar:
+
The vector field generated by the gradients of a scalar function $  f $
 +
in several variables $  t = ( t  ^ {1} \dots t  ^ {n} ) $
 +
which belong to some domain $  T $
 +
in an $  n $-
 +
dimensional space. The function $  f $
 +
is called the scalar potential (potential function) of this field. A potential field is completely integrable over $  T $:  
 +
The [[Pfaffian equation|Pfaffian equation]] $  (  \mathop{\rm grad}  f ( t) , d t ) = 0 $
 +
has the level lines $  ( n = 2 ) $
 +
or the level surfaces $  ( n \geq  3 ) $
 +
of the potential $  f $
 +
as $  ( n - 1 ) $-
 +
dimensional integral manifolds. Any regular covariant field $  v = ( v _ {1} \dots v _ {n} ) $
 +
that is completely integrable over $  T $
 +
is obtained by multiplying the potential field by a scalar:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410014.png" /></td> </tr></table>
+
$$
 +
v _  \alpha  ( t)  = c ( t)
 +
\frac{\partial  f }{\partial  t  ^  \alpha  }
 +
,\ \
 +
1 \leq  \alpha \leq  n .
 +
$$
  
The scalar <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410015.png" /> is called an integrating factor of the Pfaffian equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410016.png" />. The following equalities serve as a test for the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410017.png" /> to be the gradient of a potential (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410018.png" />):
+
The scalar $  1 / c ( t) $
 +
is called an integrating factor of the Pfaffian equation $  ( v ( t) , d t ) = 0 $.  
 +
The following equalities serve as a test for the field $  v _  \alpha  ( t) $
 +
to be the gradient of a potential ( $  c ( t) = 1 $):
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410019.png" /></td> </tr></table>
+
$$
  
They indicate that the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410020.png" /> is rotation free (see [[Curl|Curl]]).
+
\frac{\partial  v _  \alpha  }{\partial  t  ^  \beta  }
 +
  = \
  
The concept of a potential field is widely used in mechanics and physics. The majority of force fields and electric fields can be considered as potential fields. For instance, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410021.png" /> is the pressure at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410022.png" /> of an ideal fluid filling a region <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410023.png" />, then the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410024.png" /> is equal to the equilibrium pressure force applied to the volume element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410025.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410026.png" /> is the temperature of a heated body <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410027.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410028.png" />, then the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410029.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410030.png" /> is the thermal conductivity coefficient, is equal to the density of the heat flow in the direction of less heated parts of the body (in the direction orthogonal to the isothermal surfaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410031.png" />).
+
\frac{\partial  v _  \beta  }{\partial  t  ^  \alpha  }
 +
,\ \
 +
1 \leq  \alpha , \beta \leq  n .
 +
$$
  
 +
They indicate that the field  $  v ( t) $
 +
is rotation free (see [[Curl|Curl]]).
  
 +
The concept of a potential field is widely used in mechanics and physics. The majority of force fields and electric fields can be considered as potential fields. For instance, if  $  f ( t) $
 +
is the pressure at a point  $  t $
 +
of an ideal fluid filling a region  $  T $,
 +
then the vector  $  F = -  \mathop{\rm grad}  f \cdot d \omega $
 +
is equal to the equilibrium pressure force applied to the volume element  $  d \omega $.
 +
If  $  f ( t) $
 +
is the temperature of a heated body  $  T $
 +
at a point  $  t $,
 +
then the vector  $  F = - k \cdot  \mathop{\rm grad}  f $,
 +
where  $  k $
 +
is the thermal conductivity coefficient, is equal to the density of the heat flow in the direction of less heated parts of the body (in the direction orthogonal to the isothermal surfaces  $  f = \textrm{ const } $).
  
 
====Comments====
 
====Comments====
In the above, complete integrability of a vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410032.png" /> means that the Pfaffian equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410033.png" /> defines an [[Involutive distribution|involutive distribution]], i.e. an integrable one. A differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410034.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410035.png" /> for some potential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410036.png" /> is called a total differential and the corresponding function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410037.png" /> is sometimes called a complete integral. Especially for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410039.png" /> is called an exact differential equation.
+
In the above, complete integrability of a vector field $  ( v _ {1} \dots v _ {n} ) $
 +
means that the Pfaffian equation $  v _ {1}  dt  ^ {1} + \dots + v _ {n}  dt  ^ {n} = 0 $
 +
defines an [[Involutive distribution|involutive distribution]], i.e. an integrable one. A differential $  v _ {1}  dt  ^ {1} + \dots + v _ {n}  dt  ^ {n} $
 +
such that $  v _ {i} = {\partial  f } / {\partial  t  ^ {i} } $
 +
for some potential $  f $
 +
is called a total differential and the corresponding function $  f $
 +
is sometimes called a complete integral. Especially for $  n = 2 $,  
 +
$  v _ {1}  dt  ^ {1} + v _ {2}  dt  ^ {2} = 0 $
 +
is called an exact differential equation.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Triebel,  "Analysis and mathematical physics" , Reidel  (1986)  pp. Sect. 10.1.4</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E. Zauderer,  "Partial differential equations" , Wiley (Interscience)  (1989)  pp. 92</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  K. Rektorys (ed.) , ''Applicable mathematics'' , Iliffe  (1969)  pp. Sects. 12.3, 14.7</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Triebel,  "Analysis and mathematical physics" , Reidel  (1986)  pp. Sect. 10.1.4</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E. Zauderer,  "Partial differential equations" , Wiley (Interscience)  (1989)  pp. 92</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  K. Rektorys (ed.) , ''Applicable mathematics'' , Iliffe  (1969)  pp. Sects. 12.3, 14.7</TD></TR></table>

Latest revision as of 08:07, 6 June 2020


gradient field

The vector field generated by the gradients of a scalar function $ f $ in several variables $ t = ( t ^ {1} \dots t ^ {n} ) $ which belong to some domain $ T $ in an $ n $- dimensional space. The function $ f $ is called the scalar potential (potential function) of this field. A potential field is completely integrable over $ T $: The Pfaffian equation $ ( \mathop{\rm grad} f ( t) , d t ) = 0 $ has the level lines $ ( n = 2 ) $ or the level surfaces $ ( n \geq 3 ) $ of the potential $ f $ as $ ( n - 1 ) $- dimensional integral manifolds. Any regular covariant field $ v = ( v _ {1} \dots v _ {n} ) $ that is completely integrable over $ T $ is obtained by multiplying the potential field by a scalar:

$$ v _ \alpha ( t) = c ( t) \frac{\partial f }{\partial t ^ \alpha } ,\ \ 1 \leq \alpha \leq n . $$

The scalar $ 1 / c ( t) $ is called an integrating factor of the Pfaffian equation $ ( v ( t) , d t ) = 0 $. The following equalities serve as a test for the field $ v _ \alpha ( t) $ to be the gradient of a potential ( $ c ( t) = 1 $):

$$ \frac{\partial v _ \alpha }{\partial t ^ \beta } = \ \frac{\partial v _ \beta }{\partial t ^ \alpha } ,\ \ 1 \leq \alpha , \beta \leq n . $$

They indicate that the field $ v ( t) $ is rotation free (see Curl).

The concept of a potential field is widely used in mechanics and physics. The majority of force fields and electric fields can be considered as potential fields. For instance, if $ f ( t) $ is the pressure at a point $ t $ of an ideal fluid filling a region $ T $, then the vector $ F = - \mathop{\rm grad} f \cdot d \omega $ is equal to the equilibrium pressure force applied to the volume element $ d \omega $. If $ f ( t) $ is the temperature of a heated body $ T $ at a point $ t $, then the vector $ F = - k \cdot \mathop{\rm grad} f $, where $ k $ is the thermal conductivity coefficient, is equal to the density of the heat flow in the direction of less heated parts of the body (in the direction orthogonal to the isothermal surfaces $ f = \textrm{ const } $).

Comments

In the above, complete integrability of a vector field $ ( v _ {1} \dots v _ {n} ) $ means that the Pfaffian equation $ v _ {1} dt ^ {1} + \dots + v _ {n} dt ^ {n} = 0 $ defines an involutive distribution, i.e. an integrable one. A differential $ v _ {1} dt ^ {1} + \dots + v _ {n} dt ^ {n} $ such that $ v _ {i} = {\partial f } / {\partial t ^ {i} } $ for some potential $ f $ is called a total differential and the corresponding function $ f $ is sometimes called a complete integral. Especially for $ n = 2 $, $ v _ {1} dt ^ {1} + v _ {2} dt ^ {2} = 0 $ is called an exact differential equation.

References

[a1] H. Triebel, "Analysis and mathematical physics" , Reidel (1986) pp. Sect. 10.1.4
[a2] E. Zauderer, "Partial differential equations" , Wiley (Interscience) (1989) pp. 92
[a3] K. Rektorys (ed.) , Applicable mathematics , Iliffe (1969) pp. Sects. 12.3, 14.7
How to Cite This Entry:
Potential field. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Potential_field&oldid=12775
This article was adapted from an original article by L.P. Kuptsov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article