Namespaces
Variants
Actions

Difference between revisions of "Jacobi brackets"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
j0540301.png
 +
$#A+1 = 26 n = 0
 +
$#C+1 = 26 : ~/encyclopedia/old_files/data/J054/J.0504030 Jacobi brackets,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''Mayer brackets''
 
''Mayer brackets''
  
 
The differential expression
 
The differential expression
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j0540301.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
[ F, G]  = \
 +
\sum _ {k = 1 } ^ { n }
 +
\left [
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j0540302.png" /></td> </tr></table>
+
\frac{\partial  F }{\partial  p _ {k} }
  
in the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j0540303.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j0540304.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j0540305.png" /> independent variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j0540306.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j0540307.png" />.
+
\left (
 +
 
 +
\frac{\partial  G }{\partial  x _ {k} }
 +
+
 +
p _ {k}
 +
\frac{\partial  G }{\partial  u }
 +
 
 +
\right ) \right . -
 +
$$
 +
 
 +
$$
 +
- \left .
 +
 
 +
\frac{\partial  G }{\partial  p _ {k} }
 +
 
 +
\left (
 +
\frac{\partial  F }{\partial  x _ {k} }
 +
+ p _ {k}
 +
\frac{\partial  F }{\partial  u }
 +
\right )  \right ]
 +
$$
 +
 
 +
in the functions $  F ( x, u , p) $
 +
and $  G ( x, u , p) $
 +
of $  2n + 1 $
 +
independent variables $  x = ( x _ {1} \dots x _ {n} ) $
 +
and $  p = ( p _ {1} \dots p _ {n} ) $.
  
 
The main properties are:
 
The main properties are:
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j0540308.png" />;
+
1) $  [ F, G] = - [ G, F] $;
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j0540309.png" />;
+
2) $  [ F, GH] = G [ F, H] + H [ F, G] $;
  
3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403012.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403013.png" />;
+
3) if $  G = g ( y) $,  
 +
$  y = ( y _ {1} \dots y _ {s} ) $
 +
and $  y _ {i} = f _ {i} ( x) $,  
 +
then $  [ F, G] = \sum _ {i = 1 }  ^ {s} ( {\partial  g } / {\partial  y _ {i} } ) [ F, f _ {i} ] $;
  
4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403014.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403015.png" />.
+
4) $  [ F, [ G, H]] + [ G, [ H, F]] + [ H, [ F, G]] = $
 +
$  ( {\partial  F } / {\partial  u } ) [ G, H] + ( {\partial  G } / {\partial  u } ) [ H, F] + ( {\partial  H } / {\partial  u } ) [ F, G] $.
  
 
The last property is called the Jacobi identity (see [[#References|[1]]], [[#References|[2]]]).
 
The last property is called the Jacobi identity (see [[#References|[1]]], [[#References|[2]]]).
Line 23: Line 68:
 
The expression (1) is sometimes written in the form
 
The expression (1) is sometimes written in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403016.png" /></td> </tr></table>
+
$$
 +
\sum _ {k = 1 } ^ { n }
 +
\left (
 +
 
 +
\frac{\partial  F }{\partial  p _ {k} }
 +
 
 +
\frac{dG }{dx _ {k} }
 +
-
 +
 
 +
\frac{\partial  G }{\partial  p _ {k} }
 +
 
 +
\frac{dF }{dx _ {k} }
 +
 
 +
\right ) ,
 +
$$
  
 
where the symbolic notation
 
where the symbolic notation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
  
is used. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403019.png" /> are regarded as functions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403020.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403022.png" />, then (2) gets the meaning of the total derivative with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403023.png" />.
+
\frac{dH }{dx _ {k} }
 +
  = \
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403025.png" /> are independent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054030/j05403026.png" />, then their Jacobi brackets (1) are [[Poisson brackets|Poisson brackets]].
+
\frac{\partial  H }{\partial  x _ {k} }
 +
+
 +
p _ {k}
 +
\frac{\partial  H }{\partial  u }
 +
 
 +
$$
 +
 
 +
is used. If $  u $
 +
and  $  p _ {k} $
 +
are regarded as functions of  $  x = ( x _ {1} \dots x _ {n} ) $,
 +
and  $  p _ {k} = \partial  u/ \partial  x _ {k} $,
 +
$  1 \leq  k \leq  n $,
 +
then (2) gets the meaning of the total derivative with respect to  $  x _ {k} $.
 +
 
 +
If  $  F $
 +
and $  G $
 +
are independent of $  u $,  
 +
then their Jacobi brackets (1) are [[Poisson brackets|Poisson brackets]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C.G.J. Jacobi,  "Nova methodus, aequationes differentiales partiales primi ordinis inter numerum variabilium quemcunque propositas integrandi"  ''J. Reine Angew. Math.'' , '''60'''  (1862)  pp. 1–181</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Mayer,  "Ueber die Weiler'sche Integrationsmethode der partiellen Differentialgleichungen erster Ordnung"  ''Math. Ann.'' , '''9'''  (1876)  pp. 347–370</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N.M. Gyunter,  "Integrating first-order partial differential equations" , Leningrad-Moscow  (1934)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  W.W. [V.V. Stepanov] Stepanow,  "Lehrbuch der Differentialgleichungen" , Deutsch. Verlag Wissenschaft.  (1956)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C.G.J. Jacobi,  "Nova methodus, aequationes differentiales partiales primi ordinis inter numerum variabilium quemcunque propositas integrandi"  ''J. Reine Angew. Math.'' , '''60'''  (1862)  pp. 1–181</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Mayer,  "Ueber die Weiler'sche Integrationsmethode der partiellen Differentialgleichungen erster Ordnung"  ''Math. Ann.'' , '''9'''  (1876)  pp. 347–370</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N.M. Gyunter,  "Integrating first-order partial differential equations" , Leningrad-Moscow  (1934)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  W.W. [V.V. Stepanov] Stepanow,  "Lehrbuch der Differentialgleichungen" , Deutsch. Verlag Wissenschaft.  (1956)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 22:14, 5 June 2020


Mayer brackets

The differential expression

$$ \tag{1 } [ F, G] = \ \sum _ {k = 1 } ^ { n } \left [ \frac{\partial F }{\partial p _ {k} } \left ( \frac{\partial G }{\partial x _ {k} } + p _ {k} \frac{\partial G }{\partial u } \right ) \right . - $$

$$ - \left . \frac{\partial G }{\partial p _ {k} } \left ( \frac{\partial F }{\partial x _ {k} } + p _ {k} \frac{\partial F }{\partial u } \right ) \right ] $$

in the functions $ F ( x, u , p) $ and $ G ( x, u , p) $ of $ 2n + 1 $ independent variables $ x = ( x _ {1} \dots x _ {n} ) $ and $ p = ( p _ {1} \dots p _ {n} ) $.

The main properties are:

1) $ [ F, G] = - [ G, F] $;

2) $ [ F, GH] = G [ F, H] + H [ F, G] $;

3) if $ G = g ( y) $, $ y = ( y _ {1} \dots y _ {s} ) $ and $ y _ {i} = f _ {i} ( x) $, then $ [ F, G] = \sum _ {i = 1 } ^ {s} ( {\partial g } / {\partial y _ {i} } ) [ F, f _ {i} ] $;

4) $ [ F, [ G, H]] + [ G, [ H, F]] + [ H, [ F, G]] = $ $ ( {\partial F } / {\partial u } ) [ G, H] + ( {\partial G } / {\partial u } ) [ H, F] + ( {\partial H } / {\partial u } ) [ F, G] $.

The last property is called the Jacobi identity (see [1], [2]).

The expression (1) is sometimes written in the form

$$ \sum _ {k = 1 } ^ { n } \left ( \frac{\partial F }{\partial p _ {k} } \frac{dG }{dx _ {k} } - \frac{\partial G }{\partial p _ {k} } \frac{dF }{dx _ {k} } \right ) , $$

where the symbolic notation

$$ \tag{2 } \frac{dH }{dx _ {k} } = \ \frac{\partial H }{\partial x _ {k} } + p _ {k} \frac{\partial H }{\partial u } $$

is used. If $ u $ and $ p _ {k} $ are regarded as functions of $ x = ( x _ {1} \dots x _ {n} ) $, and $ p _ {k} = \partial u/ \partial x _ {k} $, $ 1 \leq k \leq n $, then (2) gets the meaning of the total derivative with respect to $ x _ {k} $.

If $ F $ and $ G $ are independent of $ u $, then their Jacobi brackets (1) are Poisson brackets.

References

[1] C.G.J. Jacobi, "Nova methodus, aequationes differentiales partiales primi ordinis inter numerum variabilium quemcunque propositas integrandi" J. Reine Angew. Math. , 60 (1862) pp. 1–181
[2] A. Mayer, "Ueber die Weiler'sche Integrationsmethode der partiellen Differentialgleichungen erster Ordnung" Math. Ann. , 9 (1876) pp. 347–370
[3] N.M. Gyunter, "Integrating first-order partial differential equations" , Leningrad-Moscow (1934) (In Russian)
[4] W.W. [V.V. Stepanov] Stepanow, "Lehrbuch der Differentialgleichungen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)

Comments

The Poisson brackets are an essential tool in classical mechanics, cf. e.g. [a1].

References

[a1] V.I. Arnol'd, "Mathematical methods of classical mechanics" , Springer (1978) (Translated from Russian)
How to Cite This Entry:
Jacobi brackets. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jacobi_brackets&oldid=12643
This article was adapted from an original article by A.P. Soldatov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article