Difference between revisions of "Jacobi brackets"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | j0540301.png | ||
| + | $#A+1 = 26 n = 0 | ||
| + | $#C+1 = 26 : ~/encyclopedia/old_files/data/J054/J.0504030 Jacobi brackets, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''Mayer brackets'' | ''Mayer brackets'' | ||
The differential expression | The differential expression | ||
| − | + | $$ \tag{1 } | |
| + | [ F, G] = \ | ||
| + | \sum _ {k = 1 } ^ { n } | ||
| + | \left [ | ||
| − | + | \frac{\partial F }{\partial p _ {k} } | |
| − | in the functions | + | \left ( |
| + | |||
| + | \frac{\partial G }{\partial x _ {k} } | ||
| + | + | ||
| + | p _ {k} | ||
| + | \frac{\partial G }{\partial u } | ||
| + | |||
| + | \right ) \right . - | ||
| + | $$ | ||
| + | |||
| + | $$ | ||
| + | - \left . | ||
| + | |||
| + | \frac{\partial G }{\partial p _ {k} } | ||
| + | |||
| + | \left ( | ||
| + | \frac{\partial F }{\partial x _ {k} } | ||
| + | + p _ {k} | ||
| + | \frac{\partial F }{\partial u } | ||
| + | \right ) \right ] | ||
| + | $$ | ||
| + | |||
| + | in the functions $ F ( x, u , p) $ | ||
| + | and $ G ( x, u , p) $ | ||
| + | of $ 2n + 1 $ | ||
| + | independent variables $ x = ( x _ {1} \dots x _ {n} ) $ | ||
| + | and $ p = ( p _ {1} \dots p _ {n} ) $. | ||
The main properties are: | The main properties are: | ||
| − | 1) | + | 1) $ [ F, G] = - [ G, F] $; |
| − | 2) | + | 2) $ [ F, GH] = G [ F, H] + H [ F, G] $; |
| − | 3) if | + | 3) if $ G = g ( y) $, |
| + | $ y = ( y _ {1} \dots y _ {s} ) $ | ||
| + | and $ y _ {i} = f _ {i} ( x) $, | ||
| + | then $ [ F, G] = \sum _ {i = 1 } ^ {s} ( {\partial g } / {\partial y _ {i} } ) [ F, f _ {i} ] $; | ||
| − | 4) | + | 4) $ [ F, [ G, H]] + [ G, [ H, F]] + [ H, [ F, G]] = $ |
| + | $ ( {\partial F } / {\partial u } ) [ G, H] + ( {\partial G } / {\partial u } ) [ H, F] + ( {\partial H } / {\partial u } ) [ F, G] $. | ||
The last property is called the Jacobi identity (see [[#References|[1]]], [[#References|[2]]]). | The last property is called the Jacobi identity (see [[#References|[1]]], [[#References|[2]]]). | ||
| Line 23: | Line 68: | ||
The expression (1) is sometimes written in the form | The expression (1) is sometimes written in the form | ||
| − | + | $$ | |
| + | \sum _ {k = 1 } ^ { n } | ||
| + | \left ( | ||
| + | |||
| + | \frac{\partial F }{\partial p _ {k} } | ||
| + | |||
| + | \frac{dG }{dx _ {k} } | ||
| + | - | ||
| + | |||
| + | \frac{\partial G }{\partial p _ {k} } | ||
| + | |||
| + | \frac{dF }{dx _ {k} } | ||
| + | |||
| + | \right ) , | ||
| + | $$ | ||
where the symbolic notation | where the symbolic notation | ||
| − | + | $$ \tag{2 } | |
| − | + | \frac{dH }{dx _ {k} } | |
| + | = \ | ||
| − | If | + | \frac{\partial H }{\partial x _ {k} } |
| + | + | ||
| + | p _ {k} | ||
| + | \frac{\partial H }{\partial u } | ||
| + | |||
| + | $$ | ||
| + | |||
| + | is used. If $ u $ | ||
| + | and $ p _ {k} $ | ||
| + | are regarded as functions of $ x = ( x _ {1} \dots x _ {n} ) $, | ||
| + | and $ p _ {k} = \partial u/ \partial x _ {k} $, | ||
| + | $ 1 \leq k \leq n $, | ||
| + | then (2) gets the meaning of the total derivative with respect to $ x _ {k} $. | ||
| + | |||
| + | If $ F $ | ||
| + | and $ G $ | ||
| + | are independent of $ u $, | ||
| + | then their Jacobi brackets (1) are [[Poisson brackets|Poisson brackets]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C.G.J. Jacobi, "Nova methodus, aequationes differentiales partiales primi ordinis inter numerum variabilium quemcunque propositas integrandi" ''J. Reine Angew. Math.'' , '''60''' (1862) pp. 1–181</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Mayer, "Ueber die Weiler'sche Integrationsmethode der partiellen Differentialgleichungen erster Ordnung" ''Math. Ann.'' , '''9''' (1876) pp. 347–370</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.M. Gyunter, "Integrating first-order partial differential equations" , Leningrad-Moscow (1934) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> W.W. [V.V. Stepanov] Stepanow, "Lehrbuch der Differentialgleichungen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C.G.J. Jacobi, "Nova methodus, aequationes differentiales partiales primi ordinis inter numerum variabilium quemcunque propositas integrandi" ''J. Reine Angew. Math.'' , '''60''' (1862) pp. 1–181</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Mayer, "Ueber die Weiler'sche Integrationsmethode der partiellen Differentialgleichungen erster Ordnung" ''Math. Ann.'' , '''9''' (1876) pp. 347–370</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.M. Gyunter, "Integrating first-order partial differential equations" , Leningrad-Moscow (1934) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> W.W. [V.V. Stepanov] Stepanow, "Lehrbuch der Differentialgleichungen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
Latest revision as of 22:14, 5 June 2020
Mayer brackets
The differential expression
$$ \tag{1 } [ F, G] = \ \sum _ {k = 1 } ^ { n } \left [ \frac{\partial F }{\partial p _ {k} } \left ( \frac{\partial G }{\partial x _ {k} } + p _ {k} \frac{\partial G }{\partial u } \right ) \right . - $$
$$ - \left . \frac{\partial G }{\partial p _ {k} } \left ( \frac{\partial F }{\partial x _ {k} } + p _ {k} \frac{\partial F }{\partial u } \right ) \right ] $$
in the functions $ F ( x, u , p) $ and $ G ( x, u , p) $ of $ 2n + 1 $ independent variables $ x = ( x _ {1} \dots x _ {n} ) $ and $ p = ( p _ {1} \dots p _ {n} ) $.
The main properties are:
1) $ [ F, G] = - [ G, F] $;
2) $ [ F, GH] = G [ F, H] + H [ F, G] $;
3) if $ G = g ( y) $, $ y = ( y _ {1} \dots y _ {s} ) $ and $ y _ {i} = f _ {i} ( x) $, then $ [ F, G] = \sum _ {i = 1 } ^ {s} ( {\partial g } / {\partial y _ {i} } ) [ F, f _ {i} ] $;
4) $ [ F, [ G, H]] + [ G, [ H, F]] + [ H, [ F, G]] = $ $ ( {\partial F } / {\partial u } ) [ G, H] + ( {\partial G } / {\partial u } ) [ H, F] + ( {\partial H } / {\partial u } ) [ F, G] $.
The last property is called the Jacobi identity (see [1], [2]).
The expression (1) is sometimes written in the form
$$ \sum _ {k = 1 } ^ { n } \left ( \frac{\partial F }{\partial p _ {k} } \frac{dG }{dx _ {k} } - \frac{\partial G }{\partial p _ {k} } \frac{dF }{dx _ {k} } \right ) , $$
where the symbolic notation
$$ \tag{2 } \frac{dH }{dx _ {k} } = \ \frac{\partial H }{\partial x _ {k} } + p _ {k} \frac{\partial H }{\partial u } $$
is used. If $ u $ and $ p _ {k} $ are regarded as functions of $ x = ( x _ {1} \dots x _ {n} ) $, and $ p _ {k} = \partial u/ \partial x _ {k} $, $ 1 \leq k \leq n $, then (2) gets the meaning of the total derivative with respect to $ x _ {k} $.
If $ F $ and $ G $ are independent of $ u $, then their Jacobi brackets (1) are Poisson brackets.
References
| [1] | C.G.J. Jacobi, "Nova methodus, aequationes differentiales partiales primi ordinis inter numerum variabilium quemcunque propositas integrandi" J. Reine Angew. Math. , 60 (1862) pp. 1–181 |
| [2] | A. Mayer, "Ueber die Weiler'sche Integrationsmethode der partiellen Differentialgleichungen erster Ordnung" Math. Ann. , 9 (1876) pp. 347–370 |
| [3] | N.M. Gyunter, "Integrating first-order partial differential equations" , Leningrad-Moscow (1934) (In Russian) |
| [4] | W.W. [V.V. Stepanov] Stepanow, "Lehrbuch der Differentialgleichungen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian) |
Comments
The Poisson brackets are an essential tool in classical mechanics, cf. e.g. [a1].
References
| [a1] | V.I. Arnol'd, "Mathematical methods of classical mechanics" , Springer (1978) (Translated from Russian) |
Jacobi brackets. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jacobi_brackets&oldid=12643