Difference between revisions of "Cellular mapping"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | c0211401.png | ||
| + | $#A+1 = 26 n = 0 | ||
| + | $#C+1 = 26 : ~/encyclopedia/old_files/data/C021/C.0201140 Cellular mapping | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | A mapping $ f: ( X, A) \rightarrow ( Y, B) $ | |
| + | from one relative [[CW-complex|CW-complex]] $ ( X, A) $ | ||
| + | into another $ ( Y, B) $ | ||
| + | such that $ f (( X, A) ^ { p } ) \subset ( Y, B) ^ { p } $, | ||
| + | where $ ( X, A) ^ { p } $ | ||
| + | and $ ( Y, B) ^ { p } $ | ||
| + | are the $ p $- | ||
| + | skeletons of $ X $ | ||
| + | and $ Y $ | ||
| + | relative to $ A $ | ||
| + | and $ B $, | ||
| + | respectively. In the case when $ A, B = \emptyset $, | ||
| + | one obtains a cellular mapping $ f $ | ||
| + | from the CW-complex $ X $ | ||
| + | into the CW-complex $ Y $. | ||
| + | A homotopy $ F: ( X, A) \rightarrow I \times ( Y, B) $, | ||
| + | where $ I = [ 0, 1] $, | ||
| + | is called cellular if $ F (( X, A) \times I) ^ { p } \subset ( Y, B) ^ { p } $ | ||
| + | for all $ p $. | ||
| + | The following cellular approximation theorem is the analogue of the simplicial approximation theorem (see [[Simplicial mapping|Simplicial mapping]]): Let $ f: ( X, A) \rightarrow ( Y, B) $ | ||
| + | be a mapping from one relative CW-complex $ ( X, A) $ | ||
| + | into another $ ( Y, B) $ | ||
| + | the restriction of which to some subcomplex $ ( L, N) \subset ( X, A) $ | ||
| + | is cellular. Then there exists a cellular mapping $ g: ( X, A) \rightarrow ( Y, B) $ | ||
| + | that is homotopic to $ f $ | ||
| + | relative to $ L $. | ||
| + | For references see also [[CW-complex|CW-complex]]. | ||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Brown, "Elements of modern topology" , McGraw-Hill (1968)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> C.R.F. Maunder, "Algebraic topology" , v. Nostrand (1970) pp. Section 7.5</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Brown, "Elements of modern topology" , McGraw-Hill (1968)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> C.R.F. Maunder, "Algebraic topology" , v. Nostrand (1970) pp. Section 7.5</TD></TR></table> | ||
Revision as of 16:43, 4 June 2020
A mapping $ f: ( X, A) \rightarrow ( Y, B) $
from one relative CW-complex $ ( X, A) $
into another $ ( Y, B) $
such that $ f (( X, A) ^ { p } ) \subset ( Y, B) ^ { p } $,
where $ ( X, A) ^ { p } $
and $ ( Y, B) ^ { p } $
are the $ p $-
skeletons of $ X $
and $ Y $
relative to $ A $
and $ B $,
respectively. In the case when $ A, B = \emptyset $,
one obtains a cellular mapping $ f $
from the CW-complex $ X $
into the CW-complex $ Y $.
A homotopy $ F: ( X, A) \rightarrow I \times ( Y, B) $, where $ I = [ 0, 1] $, is called cellular if $ F (( X, A) \times I) ^ { p } \subset ( Y, B) ^ { p } $ for all $ p $. The following cellular approximation theorem is the analogue of the simplicial approximation theorem (see Simplicial mapping): Let $ f: ( X, A) \rightarrow ( Y, B) $ be a mapping from one relative CW-complex $ ( X, A) $ into another $ ( Y, B) $ the restriction of which to some subcomplex $ ( L, N) \subset ( X, A) $ is cellular. Then there exists a cellular mapping $ g: ( X, A) \rightarrow ( Y, B) $ that is homotopic to $ f $ relative to $ L $.
For references see also CW-complex.
Comments
References
| [a1] | E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) |
| [a2] | R. Brown, "Elements of modern topology" , McGraw-Hill (1968) |
| [a3] | C.R.F. Maunder, "Algebraic topology" , v. Nostrand (1970) pp. Section 7.5 |
Cellular mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cellular_mapping&oldid=12612