Difference between revisions of "Minimal property"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | m0638701.png | ||
+ | $#A+1 = 14 n = 0 | ||
+ | $#C+1 = 14 : ~/encyclopedia/old_files/data/M063/M.0603870 Minimal property | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''of the partial sums of an orthogonal expansion'' | ''of the partial sums of an orthogonal expansion'' | ||
− | For any function | + | For any function $ f \in L _ {2} [ a , b ] $, |
+ | any orthonormal system $ \{ \phi _ {k} \} _ {k=} 1 ^ \infty $ | ||
+ | on $ [ a , b ] $ | ||
+ | and for any $ n $, | ||
+ | the equality | ||
− | + | $$ | |
+ | \inf _ | ||
+ | {\{ a _ {k} \} _ {k=} 1 ^ {n} } \ | ||
+ | \int\limits _ { a } ^ { b } | ||
+ | \left | f ( x) - \sum _ { k= } 1 ^ { n } a _ {k} \phi _ {k} ( x) \ | ||
+ | \right | ^ {2} d x = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \int\limits _ { a } ^ { b } | f ( x) - S _ {n} ( f , x ) | ^ {2} d x | ||
+ | $$ | ||
holds, where | holds, where | ||
− | + | $$ | |
+ | S _ {n} ( f , x ) = \ | ||
+ | \sum _ { k= } 1 ^ { n } | ||
+ | c _ {k} ( f ) \phi _ {k} ( x) | ||
+ | $$ | ||
− | is the | + | is the $ n $- |
+ | th partial sum of the expansion of $ f $ | ||
+ | with respect to the system $ \{ \phi _ {k} \} $, | ||
+ | that is, | ||
− | + | $$ | |
+ | c _ {k} ( f ) = \ | ||
+ | \int\limits _ { a } ^ { b } | ||
+ | f ( x) \phi _ {k} ( x) d x . | ||
+ | $$ | ||
− | The minimum is attained precisely at the sum | + | The minimum is attained precisely at the sum $ S _ {n} ( f , x ) $ |
+ | and | ||
− | + | $$ | |
+ | \int\limits _ { a } ^ { b } | f ( x) - S _ {n} ( f , x ) | ^ {2} d x = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \int\limits _ { a } ^ { b } f ^ { 2 } ( x) d x - \sum _ { k= } 1 ^ { n } | c _ {k} ( f ) | ^ {2} ,\ n = 1 , 2 ,\dots . | ||
+ | $$ | ||
Bessel's inequality, Parseval's equality for complete systems and also certain other basic properties of orthogonal expansions essentially are corollaries of this equality (cf. [[Bessel inequality|Bessel inequality]]; [[Parseval equality|Parseval equality]]; [[Complete system of functions|Complete system of functions]]; [[Orthogonal series|Orthogonal series]]; [[Orthogonal system|Orthogonal system]]). | Bessel's inequality, Parseval's equality for complete systems and also certain other basic properties of orthogonal expansions essentially are corollaries of this equality (cf. [[Bessel inequality|Bessel inequality]]; [[Parseval equality|Parseval equality]]; [[Complete system of functions|Complete system of functions]]; [[Orthogonal series|Orthogonal series]]; [[Orthogonal system|Orthogonal system]]). | ||
Line 25: | Line 67: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1978) pp. Sect. III.4</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1978) pp. Sect. III.4</TD></TR></table> |
Revision as of 08:00, 6 June 2020
of the partial sums of an orthogonal expansion
For any function $ f \in L _ {2} [ a , b ] $, any orthonormal system $ \{ \phi _ {k} \} _ {k=} 1 ^ \infty $ on $ [ a , b ] $ and for any $ n $, the equality
$$ \inf _ {\{ a _ {k} \} _ {k=} 1 ^ {n} } \ \int\limits _ { a } ^ { b } \left | f ( x) - \sum _ { k= } 1 ^ { n } a _ {k} \phi _ {k} ( x) \ \right | ^ {2} d x = $$
$$ = \ \int\limits _ { a } ^ { b } | f ( x) - S _ {n} ( f , x ) | ^ {2} d x $$
holds, where
$$ S _ {n} ( f , x ) = \ \sum _ { k= } 1 ^ { n } c _ {k} ( f ) \phi _ {k} ( x) $$
is the $ n $- th partial sum of the expansion of $ f $ with respect to the system $ \{ \phi _ {k} \} $, that is,
$$ c _ {k} ( f ) = \ \int\limits _ { a } ^ { b } f ( x) \phi _ {k} ( x) d x . $$
The minimum is attained precisely at the sum $ S _ {n} ( f , x ) $ and
$$ \int\limits _ { a } ^ { b } | f ( x) - S _ {n} ( f , x ) | ^ {2} d x = $$
$$ = \ \int\limits _ { a } ^ { b } f ^ { 2 } ( x) d x - \sum _ { k= } 1 ^ { n } | c _ {k} ( f ) | ^ {2} ,\ n = 1 , 2 ,\dots . $$
Bessel's inequality, Parseval's equality for complete systems and also certain other basic properties of orthogonal expansions essentially are corollaries of this equality (cf. Bessel inequality; Parseval equality; Complete system of functions; Orthogonal series; Orthogonal system).
References
[1] | A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) (Translated from Russian) |
[2] | S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951) |
Comments
References
[a1] | K. Yosida, "Functional analysis" , Springer (1978) pp. Sect. III.4 |
Minimal property. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Minimal_property&oldid=12599