Difference between revisions of "Mean curvature"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | m0631602.png | ||
+ | $#A+1 = 45 n = 0 | ||
+ | $#C+1 = 45 : ~/encyclopedia/old_files/data/M063/M.0603160 Mean curvature | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''of a surface $ \Phi ^ {2} $ | |
+ | in $ 3 $- | ||
+ | dimensional Euclidean space $ \mathbf R ^ {3} $'' | ||
− | + | Half of the sum of the principal curvatures (cf. [[Principal curvature|Principal curvature]]) $ k _ {1} $ | |
+ | and $ k _ {2} $, | ||
+ | calculated at a point $ A $ | ||
+ | of this surface: | ||
− | + | $$ | |
+ | H( A) = | ||
+ | \frac{k _ {1} + k _ {2} }{2} | ||
+ | . | ||
+ | $$ | ||
− | + | For a hypersurface $ \Phi ^ {n} $ | |
+ | in the Euclidean space $ \mathbf R ^ {n+} 1 $, | ||
+ | this formula is generalized in the following way: | ||
− | + | $$ | |
+ | H( A) = | ||
+ | \frac{k _ {1} + \dots + k _ {n} }{n} | ||
+ | , | ||
+ | $$ | ||
− | + | where $ k _ {i} $, | |
+ | $ i = 1 \dots n $, | ||
+ | are the principal curvatures of the hypersurface, calculated at a point $ A \in \Phi ^ {n} $. | ||
− | + | The mean curvature of a surface in $ \mathbf R ^ {3} $ | |
+ | can be expressed by means of the coefficients of the first and second fundamental forms of this surface: | ||
− | + | $$ | |
+ | H( A) = | ||
+ | \frac{1}{2} | ||
+ | |||
+ | \frac{LG - 2MF + NE }{EG - F ^ { 2 } } | ||
+ | , | ||
+ | $$ | ||
− | + | where $ E, F, G $ | |
+ | are the coefficients of the [[First fundamental form|first fundamental form]], and $ L, M, N $ | ||
+ | are the coefficients of the [[Second fundamental form|second fundamental form]], calculated at a point $ A \in \Phi ^ {2} $. | ||
+ | In the particular case where the surface is defined by an equation $ z = f( x, y) $, | ||
+ | the mean curvature is calculated using the formula: | ||
− | + | $$ | |
+ | H ( A) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
− | + | \frac{\left ( 1 + \left ( | |
+ | \frac{\partial f }{\partial y } | ||
+ | \right ) ^ {2} | ||
+ | \right ) | ||
+ | \frac{\partial ^ {2} f }{\partial x ^ {2} } | ||
+ | - 2 | ||
+ | \frac{\partial f | ||
+ | }{\partial x } | ||
+ | |||
+ | \frac{\partial f }{\partial y } | ||
+ | |||
+ | \frac{\partial ^ {2} f }{\partial x \partial y } | ||
+ | + \left ( 1 + \left ( | ||
+ | \frac{\partial f }{ | ||
+ | \partial x } | ||
+ | \right ) ^ {2} \right ) | ||
+ | \frac{\partial ^ {2} f }{\partial y ^ {2} } | ||
+ | }{\left ( 1 + \left ( | ||
+ | \frac{\partial f }{\partial x } | ||
+ | \right ) ^ {2} + \left ( | ||
+ | \frac{\partial f }{\partial y } | ||
+ | \right ) ^ {2} \right ) ^ {3/2} } | ||
+ | , | ||
+ | $$ | ||
+ | |||
+ | which is generalized for a hypersurface $ \Phi ^ {n} $ | ||
+ | in $ \mathbf R ^ {n+} 1 $, | ||
+ | defined by the equation $ x _ {n+} 1 = f( x _ {1} \dots x _ {n} ) $, | ||
+ | as follows: | ||
− | + | $$ | |
+ | H ( A) = | ||
+ | \frac{\sum _ { i= } 1 ^ { n } \left ( 1 + p ^ {2} - \left ( | ||
+ | \frac{\partial | ||
+ | f }{\partial x _ {i} } | ||
+ | \right ) ^ {2} \right ) | ||
+ | \frac{\partial ^ {2} f }{\partial x _ {i} ^ {2} } | ||
+ | - \sum _ { i,j= } 1 ^ { n } | ||
+ | \frac{\partial f | ||
+ | }{\partial x _ {i} } | ||
+ | |||
+ | \frac{\partial f }{\partial x _ {j} } | ||
+ | |||
+ | \frac{ | ||
+ | \partial ^ {2} f }{\partial x _ {i} \partial x _ {j} } | ||
+ | }{( 1 + p ^ {2} ) ^ {3/2} } | ||
+ | , | ||
+ | $$ | ||
+ | where | ||
+ | $$ | ||
+ | p ^ {2} = | \mathop{\rm grad} f | ^ {2} = \ | ||
+ | \left ( | ||
+ | \frac{\partial f }{\partial x _ {1} } | ||
+ | \right ) ^ {2} + \dots | ||
+ | + \left ( | ||
+ | \frac{\partial f }{\partial x _ {n} } | ||
+ | \right ) ^ {2} . | ||
+ | $$ | ||
====Comments==== | ====Comments==== | ||
− | For an | + | For an $ m $- |
+ | dimensional submanifold $ M $ | ||
+ | of an $ n $- | ||
+ | dimensional Euclidean space of codimension $ n - m > 1 $, | ||
+ | the mean curvature generalizes to the notion of the mean curvature normal | ||
− | + | $$ | |
+ | \nu _ {p} = | ||
+ | \frac{1}{m} | ||
+ | \sum _ { j= } 1 ^ { n- } m [ \mathop{\rm Tr} A | ||
+ | ( e _ {j} ) ] e _ {j} , | ||
+ | $$ | ||
− | where | + | where $ e _ {1} \dots e _ {n-} m $ |
+ | is an orthonormal frame of the normal space (cf. [[Normal space (to a surface)|Normal space (to a surface)]]) of $ M $ | ||
+ | at $ p $ | ||
+ | and $ A ( e _ {j} ) : T _ {p} M \rightarrow T _ {p} M $( | ||
+ | $ T _ {p} M $ | ||
+ | denotes the tangent space to $ M $ | ||
+ | at $ p $) | ||
+ | is the shape operator of $ M $ | ||
+ | at $ p $ | ||
+ | in the direction $ e _ {j} $, | ||
+ | which is related to the second fundamental tensor $ V $ | ||
+ | of $ M $ | ||
+ | at $ p $ | ||
+ | by $ \langle A ( e _ {j} ) ( X) , Y \rangle = \langle V ( X , Y ) , e _ {j} \rangle $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Berger, B. Gostiaux, "Differential geometry: manifolds, curves, and surfaces" , Springer (1988) (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M.P. Do Carmo, "Differential geometry of curves and surfaces" , Prentice-Hall (1976)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , Springer (1973)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> B.-Y. Chen, "Geometry of submanifolds" , M. Dekker (1973)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Berger, B. Gostiaux, "Differential geometry: manifolds, curves, and surfaces" , Springer (1988) (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M.P. Do Carmo, "Differential geometry of curves and surfaces" , Prentice-Hall (1976)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , Springer (1973)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> B.-Y. Chen, "Geometry of submanifolds" , M. Dekker (1973)</TD></TR></table> |
Revision as of 08:00, 6 June 2020
of a surface $ \Phi ^ {2} $
in $ 3 $-
dimensional Euclidean space $ \mathbf R ^ {3} $
Half of the sum of the principal curvatures (cf. Principal curvature) $ k _ {1} $ and $ k _ {2} $, calculated at a point $ A $ of this surface:
$$ H( A) = \frac{k _ {1} + k _ {2} }{2} . $$
For a hypersurface $ \Phi ^ {n} $ in the Euclidean space $ \mathbf R ^ {n+} 1 $, this formula is generalized in the following way:
$$ H( A) = \frac{k _ {1} + \dots + k _ {n} }{n} , $$
where $ k _ {i} $, $ i = 1 \dots n $, are the principal curvatures of the hypersurface, calculated at a point $ A \in \Phi ^ {n} $.
The mean curvature of a surface in $ \mathbf R ^ {3} $ can be expressed by means of the coefficients of the first and second fundamental forms of this surface:
$$ H( A) = \frac{1}{2} \frac{LG - 2MF + NE }{EG - F ^ { 2 } } , $$
where $ E, F, G $ are the coefficients of the first fundamental form, and $ L, M, N $ are the coefficients of the second fundamental form, calculated at a point $ A \in \Phi ^ {2} $. In the particular case where the surface is defined by an equation $ z = f( x, y) $, the mean curvature is calculated using the formula:
$$ H ( A) = $$
$$ = \ \frac{\left ( 1 + \left ( \frac{\partial f }{\partial y } \right ) ^ {2} \right ) \frac{\partial ^ {2} f }{\partial x ^ {2} } - 2 \frac{\partial f }{\partial x } \frac{\partial f }{\partial y } \frac{\partial ^ {2} f }{\partial x \partial y } + \left ( 1 + \left ( \frac{\partial f }{ \partial x } \right ) ^ {2} \right ) \frac{\partial ^ {2} f }{\partial y ^ {2} } }{\left ( 1 + \left ( \frac{\partial f }{\partial x } \right ) ^ {2} + \left ( \frac{\partial f }{\partial y } \right ) ^ {2} \right ) ^ {3/2} } , $$
which is generalized for a hypersurface $ \Phi ^ {n} $ in $ \mathbf R ^ {n+} 1 $, defined by the equation $ x _ {n+} 1 = f( x _ {1} \dots x _ {n} ) $, as follows:
$$ H ( A) = \frac{\sum _ { i= } 1 ^ { n } \left ( 1 + p ^ {2} - \left ( \frac{\partial f }{\partial x _ {i} } \right ) ^ {2} \right ) \frac{\partial ^ {2} f }{\partial x _ {i} ^ {2} } - \sum _ { i,j= } 1 ^ { n } \frac{\partial f }{\partial x _ {i} } \frac{\partial f }{\partial x _ {j} } \frac{ \partial ^ {2} f }{\partial x _ {i} \partial x _ {j} } }{( 1 + p ^ {2} ) ^ {3/2} } , $$
where
$$ p ^ {2} = | \mathop{\rm grad} f | ^ {2} = \ \left ( \frac{\partial f }{\partial x _ {1} } \right ) ^ {2} + \dots + \left ( \frac{\partial f }{\partial x _ {n} } \right ) ^ {2} . $$
Comments
For an $ m $- dimensional submanifold $ M $ of an $ n $- dimensional Euclidean space of codimension $ n - m > 1 $, the mean curvature generalizes to the notion of the mean curvature normal
$$ \nu _ {p} = \frac{1}{m} \sum _ { j= } 1 ^ { n- } m [ \mathop{\rm Tr} A ( e _ {j} ) ] e _ {j} , $$
where $ e _ {1} \dots e _ {n-} m $ is an orthonormal frame of the normal space (cf. Normal space (to a surface)) of $ M $ at $ p $ and $ A ( e _ {j} ) : T _ {p} M \rightarrow T _ {p} M $( $ T _ {p} M $ denotes the tangent space to $ M $ at $ p $) is the shape operator of $ M $ at $ p $ in the direction $ e _ {j} $, which is related to the second fundamental tensor $ V $ of $ M $ at $ p $ by $ \langle A ( e _ {j} ) ( X) , Y \rangle = \langle V ( X , Y ) , e _ {j} \rangle $.
References
[a1] | M. Berger, B. Gostiaux, "Differential geometry: manifolds, curves, and surfaces" , Springer (1988) (Translated from French) |
[a2] | M.P. Do Carmo, "Differential geometry of curves and surfaces" , Prentice-Hall (1976) |
[a3] | W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , Springer (1973) |
[a4] | B.-Y. Chen, "Geometry of submanifolds" , M. Dekker (1973) |
Mean curvature. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mean_curvature&oldid=12526