Difference between revisions of "Whittaker functions"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | w0978501.png | ||
+ | $#A+1 = 18 n = 0 | ||
+ | $#C+1 = 18 : ~/encyclopedia/old_files/data/W097/W.0907850 Whittaker functions | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | The | + | The functions $ M _ {\lambda , \mu } ( z) $ |
+ | and $ W _ {\lambda , \mu } ( z) $ | ||
+ | which are solutions of the [[Whittaker equation|Whittaker equation]] | ||
− | + | $$ \tag{* } | |
+ | w ^ {\prime\prime} + | ||
+ | \left ( | ||
− | + | \frac{ {1 / 4 } - \mu ^ {2} }{z ^ {2} } | |
+ | + | ||
+ | { | ||
+ | \frac \lambda {z} | ||
+ | } - | ||
+ | { | ||
+ | \frac{1}{4} | ||
+ | } | ||
+ | \right ) w = 0. | ||
+ | $$ | ||
+ | |||
+ | The function $ W _ {\lambda , \mu } $ | ||
+ | satisfies the equation | ||
+ | |||
+ | $$ | ||
+ | W _ {\lambda , \mu } ( z) = \ | ||
+ | |||
+ | \frac{\Gamma (- 2 \mu ) }{\Gamma \left ( { | ||
+ | \frac{1}{2} | ||
+ | } - \lambda - \mu \right ) } | ||
+ | |||
+ | M _ {\lambda , \mu } ( z) + | ||
+ | |||
+ | \frac{\Gamma ( 2 \mu ) }{\Gamma \left ( { | ||
+ | \frac{1}{2} | ||
+ | } - \lambda + \mu \right ) } | ||
+ | |||
+ | M _ {\lambda , - \mu } ( z). | ||
+ | $$ | ||
+ | |||
+ | The pairs of functions $ M _ {\lambda , \mu } ( z) , M _ {\lambda , - \mu } ( z) $ | ||
+ | and $ W _ {\lambda , \mu } ( z) , W _ {- \lambda , \mu } ( z) $ | ||
+ | are linearly independent solutions of the equation (*). The point $ z = 0 $ | ||
+ | is a branching point for $ M _ {\lambda , \mu } ( z) $, | ||
+ | and $ z = \infty $ | ||
+ | is an essential singularity. | ||
Relation with other functions: | Relation with other functions: | ||
Line 13: | Line 60: | ||
with the [[Degenerate hypergeometric function|degenerate hypergeometric function]]: | with the [[Degenerate hypergeometric function|degenerate hypergeometric function]]: | ||
− | + | $$ | |
+ | M _ {\lambda , \mu } ( z) = \ | ||
+ | z ^ {\mu + 1/2 } | ||
+ | e ^ {-} z/2 | ||
+ | \Phi \left ( \mu - \lambda + | ||
+ | \frac{1}{2} | ||
+ | ; \ | ||
+ | 2 \mu + 1; z \right ) , | ||
+ | $$ | ||
with the modified [[Bessel functions|Bessel functions]] and the [[Macdonald function|Macdonald function]]: | with the modified [[Bessel functions|Bessel functions]] and the [[Macdonald function|Macdonald function]]: | ||
− | + | $$ | |
+ | M _ {0, \mu } ( z) = \ | ||
+ | 2 ^ {2 \mu } \Gamma ( \mu + 1) | ||
+ | \sqrt z I _ \mu \left ( { | ||
+ | \frac{z}{2} | ||
+ | } \right ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | W _ {0, \mu } ( z) = \sqrt { | ||
+ | \frac{z} \pi | ||
+ | } K _ \mu \left ( { | ||
+ | \frac{z}{2} | ||
+ | } \right ) ; | ||
+ | $$ | ||
with the [[Probability integral|probability integral]]: | with the [[Probability integral|probability integral]]: | ||
− | + | $$ | |
+ | W _ {- {1 / 4 } , {1 / 4 } } ( z) = \ | ||
+ | 2 z ^ {1/4} e ^ {z/2} | ||
+ | \mathop{\rm Erfc} ( \sqrt z ); | ||
+ | $$ | ||
with the [[Laguerre polynomials|Laguerre polynomials]]: | with the [[Laguerre polynomials|Laguerre polynomials]]: | ||
− | + | $$ | |
+ | W _ {n + \mu + 1/2, \mu } ( z) = \ | ||
+ | n! (- 1) ^ {n} z ^ {\mu + 1/2 } | ||
+ | e ^ {-} z/2 L _ {n} ^ {2 \mu } ( z). | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , ''Higher transcendental functions'' , '''2. Bessel functions, parabolic cylinder functions, orthogonal polynomials''' , McGraw-Hill (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , ''Higher transcendental functions'' , '''2. Bessel functions, parabolic cylinder functions, orthogonal polynomials''' , McGraw-Hill (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The Whittaker function | + | The Whittaker function $ W _ {\lambda , \mu } $ |
+ | can be expressed in terms of the $ \Psi $- | ||
+ | function introduced in [[Confluent hypergeometric function|confluent hypergeometric function]]: | ||
− | + | $$ | |
+ | W _ {\lambda , \mu } ( z) = e ^ {- z/2 } z ^ {\mu + 1/2 } \Psi | ||
+ | ( \mu - \lambda + 1/2; 2 \mu + 1; z). | ||
+ | $$ | ||
Thus, the special cases discussed in [[Confluent hypergeometric function|confluent hypergeometric function]] can be rewritten as special cases for the Whittaker functions. See also the references given there. | Thus, the special cases discussed in [[Confluent hypergeometric function|confluent hypergeometric function]] can be rewritten as special cases for the Whittaker functions. See also the references given there. |
Revision as of 08:29, 6 June 2020
The functions $ M _ {\lambda , \mu } ( z) $
and $ W _ {\lambda , \mu } ( z) $
which are solutions of the Whittaker equation
$$ \tag{* } w ^ {\prime\prime} + \left ( \frac{ {1 / 4 } - \mu ^ {2} }{z ^ {2} } + { \frac \lambda {z} } - { \frac{1}{4} } \right ) w = 0. $$
The function $ W _ {\lambda , \mu } $ satisfies the equation
$$ W _ {\lambda , \mu } ( z) = \ \frac{\Gamma (- 2 \mu ) }{\Gamma \left ( { \frac{1}{2} } - \lambda - \mu \right ) } M _ {\lambda , \mu } ( z) + \frac{\Gamma ( 2 \mu ) }{\Gamma \left ( { \frac{1}{2} } - \lambda + \mu \right ) } M _ {\lambda , - \mu } ( z). $$
The pairs of functions $ M _ {\lambda , \mu } ( z) , M _ {\lambda , - \mu } ( z) $ and $ W _ {\lambda , \mu } ( z) , W _ {- \lambda , \mu } ( z) $ are linearly independent solutions of the equation (*). The point $ z = 0 $ is a branching point for $ M _ {\lambda , \mu } ( z) $, and $ z = \infty $ is an essential singularity.
Relation with other functions:
with the degenerate hypergeometric function:
$$ M _ {\lambda , \mu } ( z) = \ z ^ {\mu + 1/2 } e ^ {-} z/2 \Phi \left ( \mu - \lambda + \frac{1}{2} ; \ 2 \mu + 1; z \right ) , $$
with the modified Bessel functions and the Macdonald function:
$$ M _ {0, \mu } ( z) = \ 2 ^ {2 \mu } \Gamma ( \mu + 1) \sqrt z I _ \mu \left ( { \frac{z}{2} } \right ) , $$
$$ W _ {0, \mu } ( z) = \sqrt { \frac{z} \pi } K _ \mu \left ( { \frac{z}{2} } \right ) ; $$
with the probability integral:
$$ W _ {- {1 / 4 } , {1 / 4 } } ( z) = \ 2 z ^ {1/4} e ^ {z/2} \mathop{\rm Erfc} ( \sqrt z ); $$
with the Laguerre polynomials:
$$ W _ {n + \mu + 1/2, \mu } ( z) = \ n! (- 1) ^ {n} z ^ {\mu + 1/2 } e ^ {-} z/2 L _ {n} ^ {2 \mu } ( z). $$
References
[1] | H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , Higher transcendental functions , 2. Bessel functions, parabolic cylinder functions, orthogonal polynomials , McGraw-Hill (1953) |
[2] | E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) |
Comments
The Whittaker function $ W _ {\lambda , \mu } $ can be expressed in terms of the $ \Psi $- function introduced in confluent hypergeometric function:
$$ W _ {\lambda , \mu } ( z) = e ^ {- z/2 } z ^ {\mu + 1/2 } \Psi ( \mu - \lambda + 1/2; 2 \mu + 1; z). $$
Thus, the special cases discussed in confluent hypergeometric function can be rewritten as special cases for the Whittaker functions. See also the references given there.
Whittaker functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Whittaker_functions&oldid=12501