Namespaces
Variants
Actions

Difference between revisions of "Two-body problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A problem dealing with the motion of two material points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t0944801.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t0944802.png" /> with masses <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t0944803.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t0944804.png" />, respectively, moving in three-dimensional Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t0944805.png" /> when acted upon by the mutual Newton attracting forces. The problem is a special case of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t0944807.png" />-body problem, which may be described by a system of ordinary differential equations of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t0944808.png" />, and has 10 independent integrals: 6 of motion of the centre of inertia, 3 of law of areas (equivalently, conservation of angular momentum) and 1 of energy conservation [[#References|[1]]]. The two-body problem also has three Laplace integrals (one of which is independent of the preceding ones) and is completely integrable [[#References|[2]]].
+
<!--
 +
t0944801.png
 +
$#A+1 = 34 n = 0
 +
$#C+1 = 34 : ~/encyclopedia/old_files/data/T094/T.0904480 Two\AAhbody problem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The integration of the two-body problem is more conveniently effected in a special system of coordinates, in which these integrals are employed. If the origin of the Cartesian coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t0944809.png" /> is placed at the centre of mass <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448010.png" /> and the axis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448011.png" /> is directed along the relative angular momentum vector, then the motion of the relative position vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448012.png" /> takes place in the plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448013.png" /> and satisfies the system
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448014.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
A problem dealing with the motion of two material points  $  P _ {1} $
 +
and  $  P _ {2} $
 +
with masses  $  m _ {1} $
 +
and  $  m _ {2} $,
 +
respectively, moving in three-dimensional Euclidean space  $  E  ^ {3} $
 +
when acted upon by the mutual Newton attracting forces. The problem is a special case of the  $  n $-
 +
body problem, which may be described by a system of ordinary differential equations of order  $  6n $,
 +
and has 10 independent integrals: 6 of motion of the centre of inertia, 3 of law of areas (equivalently, conservation of angular momentum) and 1 of energy conservation [[#References|[1]]]. The two-body problem also has three Laplace integrals (one of which is independent of the preceding ones) and is completely integrable [[#References|[2]]].
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448016.png" /> is the reduced mass and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448017.png" /> is the gravitational constant. The system (1) has four integrals:
+
The integration of the two-body problem is more conveniently effected in a special system of coordinates, in which these integrals are employed. If the origin of the Cartesian coordinates  $  x , y , z $
 +
is placed at the centre of mass $  ( m _ {1} \vec{r} {} _ {1} + m _ {2} \vec{r} {} _ {2} ) / ( m _ {1} + m _ {2} ) $
 +
and the axis  $  z $
 +
is directed along the relative angular momentum vector, then the motion of the relative position vector  $  \vec{r} {} _ {1} - \vec{r} {} _ {2} = ( x, y, z) $
 +
takes place in the plane  $  z = 0 $
 +
and satisfies the system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448018.png" /></td> </tr></table>
+
$$ \tag{1 }
 +
\mu \dot{x} dot  = - f x r  ^ {-} 3 ,\  \mu \dot{y} dot  = - f y r  ^ {-} 3 ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448019.png" /></td> </tr></table>
+
where  $  r = \sqrt {x  ^ {2} + y  ^ {2} } $,
 +
$  \mu = m _ {1} m _ {2} /( m _ {1} + m _ {2} ) $
 +
is the reduced mass and  $  f $
 +
is the gravitational constant. The system (1) has four integrals:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448020.png" /></td> </tr></table>
+
$$
 +
x \dot{y} - y \dot{x}  = c \  \textrm{ (law  of  areas),  }
 +
$$
 +
 
 +
$$
 +
 
 +
\frac{1}{2}
 +
\mu ( {\dot{x} } {}  ^ {2} + {\dot{y} }
 +
{}  ^ {2} ) - f r  ^ {-} 1  = h \  roman (energy) ,
 +
$$
 +
 
 +
$$
 +
\mu  ^ {2} c \dot{y} - \mu f x r  ^ {-} 1  = \lambda _ {1} \  \textrm{ and } \ \
 +
\mu  ^ {2} c \dot{x} + \mu f y r  ^ {-} 1  = - \lambda _ {2} \  roman (Laplace) ,
 +
$$
  
 
which are interconnected by the relation
 
which are interconnected by the relation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448021.png" /></td> </tr></table>
+
$$
 +
\lambda _ {1}  ^ {2} + \lambda _ {2}  ^ {2}  = \
 +
2 \mu  ^ {3} h c  ^ {2} + \mu  ^ {2} f ^ { 2 } .
 +
$$
  
 
Here
 
Here
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448022.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
c  ^ {2}  = \lambda _ {1} x + \lambda _ {2} y + \mu r ,
 +
$$
  
i.e. the orbits of the relative position vector are conical sections with parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448023.png" />, major semi-axis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448024.png" />, eccentricity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448025.png" />, longitude of pericentre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448026.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448028.png" />), and with focus at the coordinate origin. The location of the relative positive vector on the orbit is determined by the true anomaly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448029.png" />, counted from the direction towards the pericentre; (2) then implies that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448030.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448031.png" />, three types of orbits are possible:
+
i.e. the orbits of the relative position vector are conical sections with parameter $  p = c  ^ {2} / \mu $,  
 +
major semi-axis $  a = - \mu / ( 2h) $,  
 +
eccentricity $  e = \mu  ^ {-} 1 \sqrt {1 + 2hc  ^ {2} } $,  
 +
longitude of pericentre $  \omega $(
 +
$  \lambda _ {1} = \mu e  \cos  \omega $,  
 +
$  \lambda _ {2} = \mu e  \sin  \omega $),  
 +
and with focus at the coordinate origin. The location of the relative positive vector on the orbit is determined by the true anomaly $  v $,  
 +
counted from the direction towards the pericentre; (2) then implies that $  r = p / ( 1 + e  \cos  v ) $.  
 +
If $  c \neq 0 $,  
 +
three types of orbits are possible:
  
I) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448032.png" />, they are ellipses.
+
I) If $  h < 0 $,  
 +
they are ellipses.
  
II) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448033.png" />, they are hyperbolas.
+
II) If $  h > 0 $,  
 +
they are hyperbolas.
  
III) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448034.png" />, they are parabolas.
+
III) If $  h = 0 $,  
 +
they are parabolas.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094480/t09448035.png" />, the motion is rectilinear. The two-body problem describes an unperturbed Kepler motion of a planet with respect to the Sun or of a satellite with respect to a planet, etc.
+
If $  c = 0 $,  
 +
the motion is rectilinear. The two-body problem describes an unperturbed Kepler motion of a planet with respect to the Sun or of a satellite with respect to a planet, etc.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C.L. Siegel,  "Vorlesungen über Himmelmechanik" , Springer  (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.K. Abalakin,  et al.,  "Handbook of celestial mechanics and astrodynamics" , Moscow  (1971)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C.L. Siegel,  "Vorlesungen über Himmelmechanik" , Springer  (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.K. Abalakin,  et al.,  "Handbook of celestial mechanics and astrodynamics" , Moscow  (1971)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Poincaré,  "Les méthodes nouvelles de la mécanique céleste" , '''1–3''' , Gauthier-Villars  (1899)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C.L. Siegel,  J. Moser,  "Lectures on celestial mechanics" , Springer  (1971)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  V.I. Arnol'd,  "Mathematical methods of classical mechanics" , Springer  (1978)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R. Abraham,  J.E. Marsden,  "Foundations of mechanics" , Benjamin  (1978)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Poincaré,  "Les méthodes nouvelles de la mécanique céleste" , '''1–3''' , Gauthier-Villars  (1899)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C.L. Siegel,  J. Moser,  "Lectures on celestial mechanics" , Springer  (1971)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  V.I. Arnol'd,  "Mathematical methods of classical mechanics" , Springer  (1978)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R. Abraham,  J.E. Marsden,  "Foundations of mechanics" , Benjamin  (1978)</TD></TR></table>

Revision as of 08:26, 6 June 2020


A problem dealing with the motion of two material points $ P _ {1} $ and $ P _ {2} $ with masses $ m _ {1} $ and $ m _ {2} $, respectively, moving in three-dimensional Euclidean space $ E ^ {3} $ when acted upon by the mutual Newton attracting forces. The problem is a special case of the $ n $- body problem, which may be described by a system of ordinary differential equations of order $ 6n $, and has 10 independent integrals: 6 of motion of the centre of inertia, 3 of law of areas (equivalently, conservation of angular momentum) and 1 of energy conservation [1]. The two-body problem also has three Laplace integrals (one of which is independent of the preceding ones) and is completely integrable [2].

The integration of the two-body problem is more conveniently effected in a special system of coordinates, in which these integrals are employed. If the origin of the Cartesian coordinates $ x , y , z $ is placed at the centre of mass $ ( m _ {1} \vec{r} {} _ {1} + m _ {2} \vec{r} {} _ {2} ) / ( m _ {1} + m _ {2} ) $ and the axis $ z $ is directed along the relative angular momentum vector, then the motion of the relative position vector $ \vec{r} {} _ {1} - \vec{r} {} _ {2} = ( x, y, z) $ takes place in the plane $ z = 0 $ and satisfies the system

$$ \tag{1 } \mu \dot{x} dot = - f x r ^ {-} 3 ,\ \mu \dot{y} dot = - f y r ^ {-} 3 , $$

where $ r = \sqrt {x ^ {2} + y ^ {2} } $, $ \mu = m _ {1} m _ {2} /( m _ {1} + m _ {2} ) $ is the reduced mass and $ f $ is the gravitational constant. The system (1) has four integrals:

$$ x \dot{y} - y \dot{x} = c \ \textrm{ (law of areas), } $$

$$ \frac{1}{2} \mu ( {\dot{x} } {} ^ {2} + {\dot{y} } {} ^ {2} ) - f r ^ {-} 1 = h \ roman (energy) , $$

$$ \mu ^ {2} c \dot{y} - \mu f x r ^ {-} 1 = \lambda _ {1} \ \textrm{ and } \ \ \mu ^ {2} c \dot{x} + \mu f y r ^ {-} 1 = - \lambda _ {2} \ roman (Laplace) , $$

which are interconnected by the relation

$$ \lambda _ {1} ^ {2} + \lambda _ {2} ^ {2} = \ 2 \mu ^ {3} h c ^ {2} + \mu ^ {2} f ^ { 2 } . $$

Here

$$ \tag{2 } c ^ {2} = \lambda _ {1} x + \lambda _ {2} y + \mu r , $$

i.e. the orbits of the relative position vector are conical sections with parameter $ p = c ^ {2} / \mu $, major semi-axis $ a = - \mu / ( 2h) $, eccentricity $ e = \mu ^ {-} 1 \sqrt {1 + 2hc ^ {2} } $, longitude of pericentre $ \omega $( $ \lambda _ {1} = \mu e \cos \omega $, $ \lambda _ {2} = \mu e \sin \omega $), and with focus at the coordinate origin. The location of the relative positive vector on the orbit is determined by the true anomaly $ v $, counted from the direction towards the pericentre; (2) then implies that $ r = p / ( 1 + e \cos v ) $. If $ c \neq 0 $, three types of orbits are possible:

I) If $ h < 0 $, they are ellipses.

II) If $ h > 0 $, they are hyperbolas.

III) If $ h = 0 $, they are parabolas.

If $ c = 0 $, the motion is rectilinear. The two-body problem describes an unperturbed Kepler motion of a planet with respect to the Sun or of a satellite with respect to a planet, etc.

References

[1] C.L. Siegel, "Vorlesungen über Himmelmechanik" , Springer (1956)
[2] V.K. Abalakin, et al., "Handbook of celestial mechanics and astrodynamics" , Moscow (1971) (In Russian)

Comments

References

[a1] H. Poincaré, "Les méthodes nouvelles de la mécanique céleste" , 1–3 , Gauthier-Villars (1899)
[a2] C.L. Siegel, J. Moser, "Lectures on celestial mechanics" , Springer (1971)
[a3] V.I. Arnol'd, "Mathematical methods of classical mechanics" , Springer (1978) (Translated from Russian)
[a4] R. Abraham, J.E. Marsden, "Foundations of mechanics" , Benjamin (1978)
How to Cite This Entry:
Two-body problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Two-body_problem&oldid=12452
This article was adapted from an original article by A.D. Bryuno (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article