Namespaces
Variants
Actions

Difference between revisions of "Holomorph of a group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A concept in group theory which arose in connection with the following problem. Is it possible to include any given group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h0475201.png" /> as a normal subgroup in some other group so that all the automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h0475202.png" /> are restrictions of inner automorphisms of this large group? To solve a problem of this kind, a new group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h0475203.png" /> is constructed using <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h0475204.png" /> and its [[Automorphism|automorphism]] group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h0475205.png" />. The elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h0475206.png" /> are pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h0475207.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h0475208.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h0475209.png" />, and composition of pairs is defined by the formula
+
<!--
 +
h0475201.png
 +
$#A+1 = 25 n = 0
 +
$#C+1 = 25 : ~/encyclopedia/old_files/data/H047/H.0407520 Holomorph of a group
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h04752010.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h04752011.png" /> is the image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h04752012.png" /> under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h04752013.png" />. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h04752014.png" /> (or a group isomorphic to it) is called the holomorph of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h04752015.png" />. The set of pairs of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h04752016.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h04752017.png" /> is the identity element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h04752018.png" />, constitutes a subgroup that is isomorphic to the original group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h04752019.png" />. In a similar manner, the pairs of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h04752020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h04752021.png" /> is the identity element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h04752022.png" />, constitute a subgroup isomorphic to the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h04752023.png" />. The formula
+
A concept in group theory which arose in connection with the following problem. Is it possible to include any given group $  G $
 +
as a normal subgroup in some other group so that all the automorphisms of $  G $
 +
are restrictions of inner automorphisms of this large group? To solve a problem of this kind, a new group  $  \Gamma $
 +
is constructed using  $  G $
 +
and its [[Automorphism|automorphism]] group $  \Phi ( G) $.  
 +
The elements of  $  \Gamma $
 +
are pairs $  ( g, \phi ) $
 +
where $  g \in G $,
 +
$  \phi \in \Phi ( G) $,
 +
and composition of pairs is defined by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h04752024.png" /></td> </tr></table>
+
$$
 +
( g _ {1} , \phi _ {1} ) ( g _ {2} , \phi _ {2} )  = \
 +
( g _ {1} g _ {2} ^ {\phi _ {1}  ^ {-} 1 } ,\
 +
\phi _ {1} \phi _ {2} ),
 +
$$
  
shows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047520/h04752025.png" /> is in fact a solution of the problem posed above.
+
where  $  g _ {2} ^ {\phi _ {1}  ^ {-} 1 } $
 +
is the image of  $  g _ {2} $
 +
under  $  \phi _ {1}  ^ {-} 1 $.  
 +
The group  $  \Gamma $(
 +
or a group isomorphic to it) is called the holomorph of  $  G $.  
 +
The set of pairs of the form  $  ( g, \epsilon ) $,
 +
where  $  \epsilon $
 +
is the identity element of  $  \Phi ( G) $,
 +
constitutes a subgroup that is isomorphic to the original group  $  G $.  
 +
In a similar manner, the pairs of the form  $  ( e , \phi ) $,
 +
where  $  e $
 +
is the identity element of  $  G $,
 +
constitute a subgroup isomorphic to the group  $  \Phi ( G) $.  
 +
The formula
  
 +
$$
 +
( e, \phi  ^ {-} 1 ) ( g, \epsilon ) ( e, \phi )  = \
 +
( g  ^  \phi  , \epsilon )
 +
$$
  
 +
shows that  $  \Gamma $
 +
is in fact a solution of the problem posed above.
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Hall jr.,  "The theory of groups" , Macmillan  (1959)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.G. Kurosh,  "Theory of groups" , '''1''' , Chelsea  (1955)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Hall jr.,  "The theory of groups" , Macmillan  (1959)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.G. Kurosh,  "Theory of groups" , '''1''' , Chelsea  (1955)  (Translated from Russian)</TD></TR></table>

Latest revision as of 22:10, 5 June 2020


A concept in group theory which arose in connection with the following problem. Is it possible to include any given group $ G $ as a normal subgroup in some other group so that all the automorphisms of $ G $ are restrictions of inner automorphisms of this large group? To solve a problem of this kind, a new group $ \Gamma $ is constructed using $ G $ and its automorphism group $ \Phi ( G) $. The elements of $ \Gamma $ are pairs $ ( g, \phi ) $ where $ g \in G $, $ \phi \in \Phi ( G) $, and composition of pairs is defined by the formula

$$ ( g _ {1} , \phi _ {1} ) ( g _ {2} , \phi _ {2} ) = \ ( g _ {1} g _ {2} ^ {\phi _ {1} ^ {-} 1 } ,\ \phi _ {1} \phi _ {2} ), $$

where $ g _ {2} ^ {\phi _ {1} ^ {-} 1 } $ is the image of $ g _ {2} $ under $ \phi _ {1} ^ {-} 1 $. The group $ \Gamma $( or a group isomorphic to it) is called the holomorph of $ G $. The set of pairs of the form $ ( g, \epsilon ) $, where $ \epsilon $ is the identity element of $ \Phi ( G) $, constitutes a subgroup that is isomorphic to the original group $ G $. In a similar manner, the pairs of the form $ ( e , \phi ) $, where $ e $ is the identity element of $ G $, constitute a subgroup isomorphic to the group $ \Phi ( G) $. The formula

$$ ( e, \phi ^ {-} 1 ) ( g, \epsilon ) ( e, \phi ) = \ ( g ^ \phi , \epsilon ) $$

shows that $ \Gamma $ is in fact a solution of the problem posed above.

Comments

References

[a1] M. Hall jr., "The theory of groups" , Macmillan (1959)
[a2] A.G. Kurosh, "Theory of groups" , 1 , Chelsea (1955) (Translated from Russian)
How to Cite This Entry:
Holomorph of a group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Holomorph_of_a_group&oldid=12406
This article was adapted from an original article by V.N. Remeslennikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article