Difference between revisions of "Transition probabilities"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | t0937801.png | ||
+ | $#A+1 = 56 n = 0 | ||
+ | $#C+1 = 56 : ~/encyclopedia/old_files/data/T093/T.0903780 Transition probabilities | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The probabilities of transition of a [[Markov chain|Markov chain]] $ \xi ( t) $ | |
+ | from a state $ i $ | ||
+ | into a state $ j $ | ||
+ | in a time interval $ [ s, t] $: | ||
− | + | $$ | |
+ | p _ {ij} ( s, t) = {\mathsf P} \{ \xi ( t) = j \mid \xi ( s) = i \} ,\ s< t. | ||
+ | $$ | ||
− | + | In view of the basic property of a Markov chain, for any states $ i, j \in S $( | |
+ | where $ S $ | ||
+ | is the set of all states of the chain) and any $ s < t < u $, | ||
− | + | $$ | |
+ | p _ {ij} ( s, u) = \sum _ {k \in S } p _ {ik} ( s, t) p _ {kj} ( t, u). | ||
+ | $$ | ||
− | + | One usually considers homogeneous Markov chains, for which the transition probabilities $ p _ {ij} ( s, t) $ | |
+ | depend on the length of $ [ s, t] $ | ||
+ | but not on its position on the time axis: | ||
− | + | $$ | |
+ | p _ {ij} ( s, t) = p _ {ij} ( t- s). | ||
+ | $$ | ||
+ | |||
+ | For any states $ i $ | ||
+ | and $ j $ | ||
+ | of a homogeneous Markov chain with discrete time, the sequence $ p _ {ij} ( n) $ | ||
+ | has a Cesàro limit, i.e. | ||
+ | |||
+ | $$ | ||
+ | \lim\limits _ {n \rightarrow \infty } | ||
+ | \frac{1}{n} | ||
+ | \sum _ { k= } 1 ^ { n } p _ {ij} ( k) \geq 0. | ||
+ | $$ | ||
Subject to certain additional conditions (and also for chains with continuous time), the limit exists also in the usual sense. See [[Markov chain, ergodic|Markov chain, ergodic]]; [[Markov chain, class of positive states of a|Markov chain, class of positive states of a]]. | Subject to certain additional conditions (and also for chains with continuous time), the limit exists also in the usual sense. See [[Markov chain, ergodic|Markov chain, ergodic]]; [[Markov chain, class of positive states of a|Markov chain, class of positive states of a]]. | ||
− | The transition probabilities | + | The transition probabilities $ p _ {ij} ( t) $ |
+ | for a Markov chain with discrete time are determined by the values of $ p _ {ij} ( 1) $, | ||
+ | $ i, j \in S $; | ||
+ | for any $ t > 0 $, | ||
+ | $ i \in S $, | ||
− | + | $$ | |
+ | \sum _ {j \in S } p _ {ij} ( t) = 1. | ||
+ | $$ | ||
− | In the case of Markov chains with continuous time it is usually assumed that the transition probabilities satisfy the following additional conditions: All the | + | In the case of Markov chains with continuous time it is usually assumed that the transition probabilities satisfy the following additional conditions: All the $ p _ {ij} ( t) $ |
+ | are measurable as functions of $ t \in ( 0, \infty ) $, | ||
− | + | $$ | |
+ | \lim\limits _ {t \downarrow 0 } p _ {ij} ( t) = 0 \ \ | ||
+ | ( i \neq j),\ \ | ||
+ | \lim\limits _ {t \downarrow 0 } p _ {ii} ( t) = 1 ,\ \ | ||
+ | i, j \in S. | ||
+ | $$ | ||
Under these assumptions the following transition rates exist: | Under these assumptions the following transition rates exist: | ||
− | + | $$ \tag{1 } | |
+ | \lambda _ {ij} = \lim\limits _ {t \downarrow 0 } | ||
+ | \frac{1}{t} | ||
+ | ( p _ {ij} ( t) - p _ {ij} ( 0)) | ||
+ | \leq \infty ,\ \ | ||
+ | i, j \in S; | ||
+ | $$ | ||
− | if all the | + | if all the $ \lambda _ {ij} $ |
+ | are finite and if $ \sum _ {j \in S } \lambda _ {ij} = 0 $, | ||
+ | $ i \in S $, | ||
+ | then the $ p _ {ij} ( t) $ | ||
+ | satisfy the Kolmogorov–Chapman system of differential equations | ||
− | + | $$ \tag{2 } | |
+ | p _ {ij} ^ \prime ( t) = \sum _ {k \in S } \lambda _ {ik} p _ {kj} ( t),\ \ | ||
+ | p _ {ij} ^ \prime ( t) = \sum _ {k \in S } \lambda _ {kj} p _ {ik} ( t) | ||
+ | $$ | ||
− | with the initial conditions | + | with the initial conditions $ p _ {ii} ( 0) = 1 $, |
+ | $ p _ {ij} ( 0) = 0 $, | ||
+ | $ i \neq j $, | ||
+ | $ i, j \in S $( | ||
+ | see also [[Kolmogorov equation|Kolmogorov equation]]; [[Kolmogorov–Chapman equation|Kolmogorov–Chapman equation]]). | ||
− | If a Markov chain is specified by means of the transition rates (1), then the transition probabilities | + | If a Markov chain is specified by means of the transition rates (1), then the transition probabilities $ p _ {ij} ( t) $ |
+ | satisfy the conditions | ||
− | + | $$ | |
+ | p _ {ij} ( t) \geq 0,\ \ | ||
+ | \sum _ {j \in S } p _ {ij} ( t) \leq 1,\ \ | ||
+ | i, j \in S,\ \ | ||
+ | t > 0; | ||
+ | $$ | ||
− | chains for which < | + | chains for which $ \sum _ {j \in S } p _ {ij} ( t) < 1 $ |
+ | for certain $ i \in S $ | ||
+ | and $ t > 0 $ | ||
+ | are called defective (in this case the solution to (2) is not unique); if $ \sum _ {j \in S } p _ {ij} ( t) = 1 $ | ||
+ | for all $ i \in S $ | ||
+ | and $ t > 0 $, | ||
+ | the chain is called proper. | ||
− | Example. The Markov chain | + | Example. The Markov chain $ \xi ( t) $ |
+ | with set of states $ \{ 0, 1 ,\dots \} $ | ||
+ | and transition densities | ||
− | + | $$ | |
+ | \lambda _ {i,i+} 1 = - \lambda _ {ii} = \lambda _ {i} > 0,\ \ | ||
+ | \lambda _ {ij} = 0 \ \ | ||
+ | ( i \neq j \neq i+ 1) | ||
+ | $$ | ||
(i.e., a pure birth process) is defective if and only if | (i.e., a pure birth process) is defective if and only if | ||
− | + | $$ | |
+ | \sum _ { i= } 0 ^ \infty | ||
+ | \frac{1}{\lambda _ {i} } | ||
+ | < \infty . | ||
+ | $$ | ||
Let | Let | ||
− | + | $$ | |
+ | \tau _ {0n} = \inf \{ {t > 0 } : {\xi ( t) = n ( \xi ( 0) = 0) } \} | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | \tau = \lim\limits _ {n \rightarrow \infty } \tau _ {0n} ; | ||
+ | $$ | ||
then | then | ||
− | + | $$ | |
+ | {\mathsf E} \tau = \sum _ { i= } 1 ^ \infty | ||
+ | \frac{1}{\lambda _ {i} } | ||
− | and for < | + | $$ |
+ | |||
+ | and for $ {\mathsf E} \tau < \infty $ | ||
+ | one has $ {\mathsf P} \{ \tau < \infty \} = 1 $, | ||
+ | i.e. the path of $ \xi ( t) $" | ||
+ | tends to infinity in a finite time with probability 1" (see also [[Branching processes, regularity of|Branching processes, regularity of]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> K.L. Chung, "Markov chains with stationary probability densities" , Springer (1967)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K.L. Chung, "Markov chains with stationary probability densities" , Springer (1967)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
For additional references see also [[Markov chain|Markov chain]]; [[Markov process|Markov process]]. | For additional references see also [[Markov chain|Markov chain]]; [[Markov process|Markov process]]. | ||
− | In (1), | + | In (1), $ \lambda _ {ij} \geq 0 $ |
+ | if $ i \neq j $ | ||
+ | and $ \lambda _ {ii} \leq 0 $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Iosifescu, "Finite Markov processes and their applications" , Wiley (1980)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Revuz, "Markov chains" , North-Holland (1984)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Iosifescu, "Finite Markov processes and their applications" , Wiley (1980)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Revuz, "Markov chains" , North-Holland (1984)</TD></TR></table> |
Revision as of 08:26, 6 June 2020
The probabilities of transition of a Markov chain $ \xi ( t) $
from a state $ i $
into a state $ j $
in a time interval $ [ s, t] $:
$$ p _ {ij} ( s, t) = {\mathsf P} \{ \xi ( t) = j \mid \xi ( s) = i \} ,\ s< t. $$
In view of the basic property of a Markov chain, for any states $ i, j \in S $( where $ S $ is the set of all states of the chain) and any $ s < t < u $,
$$ p _ {ij} ( s, u) = \sum _ {k \in S } p _ {ik} ( s, t) p _ {kj} ( t, u). $$
One usually considers homogeneous Markov chains, for which the transition probabilities $ p _ {ij} ( s, t) $ depend on the length of $ [ s, t] $ but not on its position on the time axis:
$$ p _ {ij} ( s, t) = p _ {ij} ( t- s). $$
For any states $ i $ and $ j $ of a homogeneous Markov chain with discrete time, the sequence $ p _ {ij} ( n) $ has a Cesàro limit, i.e.
$$ \lim\limits _ {n \rightarrow \infty } \frac{1}{n} \sum _ { k= } 1 ^ { n } p _ {ij} ( k) \geq 0. $$
Subject to certain additional conditions (and also for chains with continuous time), the limit exists also in the usual sense. See Markov chain, ergodic; Markov chain, class of positive states of a.
The transition probabilities $ p _ {ij} ( t) $ for a Markov chain with discrete time are determined by the values of $ p _ {ij} ( 1) $, $ i, j \in S $; for any $ t > 0 $, $ i \in S $,
$$ \sum _ {j \in S } p _ {ij} ( t) = 1. $$
In the case of Markov chains with continuous time it is usually assumed that the transition probabilities satisfy the following additional conditions: All the $ p _ {ij} ( t) $ are measurable as functions of $ t \in ( 0, \infty ) $,
$$ \lim\limits _ {t \downarrow 0 } p _ {ij} ( t) = 0 \ \ ( i \neq j),\ \ \lim\limits _ {t \downarrow 0 } p _ {ii} ( t) = 1 ,\ \ i, j \in S. $$
Under these assumptions the following transition rates exist:
$$ \tag{1 } \lambda _ {ij} = \lim\limits _ {t \downarrow 0 } \frac{1}{t} ( p _ {ij} ( t) - p _ {ij} ( 0)) \leq \infty ,\ \ i, j \in S; $$
if all the $ \lambda _ {ij} $ are finite and if $ \sum _ {j \in S } \lambda _ {ij} = 0 $, $ i \in S $, then the $ p _ {ij} ( t) $ satisfy the Kolmogorov–Chapman system of differential equations
$$ \tag{2 } p _ {ij} ^ \prime ( t) = \sum _ {k \in S } \lambda _ {ik} p _ {kj} ( t),\ \ p _ {ij} ^ \prime ( t) = \sum _ {k \in S } \lambda _ {kj} p _ {ik} ( t) $$
with the initial conditions $ p _ {ii} ( 0) = 1 $, $ p _ {ij} ( 0) = 0 $, $ i \neq j $, $ i, j \in S $( see also Kolmogorov equation; Kolmogorov–Chapman equation).
If a Markov chain is specified by means of the transition rates (1), then the transition probabilities $ p _ {ij} ( t) $ satisfy the conditions
$$ p _ {ij} ( t) \geq 0,\ \ \sum _ {j \in S } p _ {ij} ( t) \leq 1,\ \ i, j \in S,\ \ t > 0; $$
chains for which $ \sum _ {j \in S } p _ {ij} ( t) < 1 $ for certain $ i \in S $ and $ t > 0 $ are called defective (in this case the solution to (2) is not unique); if $ \sum _ {j \in S } p _ {ij} ( t) = 1 $ for all $ i \in S $ and $ t > 0 $, the chain is called proper.
Example. The Markov chain $ \xi ( t) $ with set of states $ \{ 0, 1 ,\dots \} $ and transition densities
$$ \lambda _ {i,i+} 1 = - \lambda _ {ii} = \lambda _ {i} > 0,\ \ \lambda _ {ij} = 0 \ \ ( i \neq j \neq i+ 1) $$
(i.e., a pure birth process) is defective if and only if
$$ \sum _ { i= } 0 ^ \infty \frac{1}{\lambda _ {i} } < \infty . $$
Let
$$ \tau _ {0n} = \inf \{ {t > 0 } : {\xi ( t) = n ( \xi ( 0) = 0) } \} , $$
$$ \tau = \lim\limits _ {n \rightarrow \infty } \tau _ {0n} ; $$
then
$$ {\mathsf E} \tau = \sum _ { i= } 1 ^ \infty \frac{1}{\lambda _ {i} } $$
and for $ {\mathsf E} \tau < \infty $ one has $ {\mathsf P} \{ \tau < \infty \} = 1 $, i.e. the path of $ \xi ( t) $" tends to infinity in a finite time with probability 1" (see also Branching processes, regularity of).
References
[1] | K.L. Chung, "Markov chains with stationary probability densities" , Springer (1967) |
Comments
For additional references see also Markov chain; Markov process.
In (1), $ \lambda _ {ij} \geq 0 $ if $ i \neq j $ and $ \lambda _ {ii} \leq 0 $.
References
[a1] | M. Iosifescu, "Finite Markov processes and their applications" , Wiley (1980) |
[a2] | D. Revuz, "Markov chains" , North-Holland (1984) |
Transition probabilities. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transition_probabilities&oldid=12319