Namespaces
Variants
Actions

Difference between revisions of "Domain of holomorphy"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d0337901.png" /> in a complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d0337902.png" /> for which there exists a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d0337903.png" />, holomorphic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d0337904.png" />, that is not holomorphically extendable to a larger domain; the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d0337905.png" /> is then called the natural domain of definition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d0337906.png" />. For example, the natural domain of definition of the function
+
<!--
 +
d0337901.png
 +
$#A+1 = 67 n = 0
 +
$#C+1 = 67 : ~/encyclopedia/old_files/data/D033/D.0303790 Domain of holomorphy
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d0337907.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
is the unit disc, which is thus a domain of holomorphy in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d0337908.png" />. Any domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d0337909.png" /> is a domain of holomorphy. In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379011.png" />, on the contrary, not all domains are domains of holomorphy. E.g., no domain of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379013.png" /> is a compactum contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379014.png" />, is a domain of holomorphy.
+
A domain  $  D $
 +
in a complex space  $  \mathbf C  ^ {n} $
 +
for which there exists a function  $  f( z) $,
 +
holomorphic in  $  D $,  
 +
that is not holomorphically extendable to a larger domain; the domain $  D $
 +
is then called the natural domain of definition of  $  f( z) $.  
 +
For example, the natural domain of definition of the function
  
A domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379015.png" /> is said to be holomorphically convex if for each compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379016.png" /> there exists a compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379017.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379018.png" /> such that for any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379019.png" /> there exists a holomorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379020.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379021.png" /> such that
+
$$
 +
\sum _ {k = 1 } ^  \infty  z  ^ {k!}
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379022.png" /></td> </tr></table>
+
is the unit disc, which is thus a domain of holomorphy in  $  \mathbf C  ^ {1} $.  
 +
Any domain in  $  \mathbf C  ^ {1} $
 +
is a domain of holomorphy. In  $  \mathbf C  ^ {n} $,
 +
$  n \geq  2 $,
 +
on the contrary, not all domains are domains of holomorphy. E.g., no domain of the form  $  D \setminus  K $,
 +
where  $  K $
 +
is a compactum contained in  $  D $,
 +
is a domain of holomorphy.
  
A domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379023.png" /> is a domain of holomorphy if and only if it is holomorphically convex (the Cartan–Thullen theorem). A domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379024.png" /> is a domain of holomorphy if and only if each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379025.png" /> has a barrier — a holomorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379026.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379027.png" /> that cannot be holomorphically continued to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379028.png" />. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379029.png" /> is an arbitrary domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379030.png" />, then the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379031.png" /> is a barrier at any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379032.png" />, so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379033.png" /> is a domain of holomorphy; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379034.png" /> is a convex domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379035.png" /> and if
+
A domain $  D \subset  \mathbf C  ^ {n} $
 +
is said to be holomorphically convex if for each compact set  $  A \subset  D $
 +
there exists a compact set  $  F _ {A} \subset  D $
 +
containing  $  A $
 +
such that for any point $  z _ {0} \in D \setminus  F _ {A} $
 +
there exists a holomorphic function $  f( z) $
 +
in $  D $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379036.png" /></td> </tr></table>
+
$$
 +
\sup _ {z \in A }  | f ( z) |  < | f ( z _ {0} ) | .
 +
$$
  
is the supporting plane at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379037.png" />, then the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379038.png" /> is a barrier at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379039.png" />, and for this reason any convex domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379040.png" /> is a domain of holomorphy.
+
A domain  $  D $
 +
is a domain of holomorphy if and only if it is holomorphically convex (the Cartan–Thullen theorem). A domain  $  D $
 +
is a domain of holomorphy if and only if each point  $  z _ {0} \in \partial  D $
 +
has a barrier — a holomorphic function  $  f _ {z _ {0}  } ( z) $
 +
in  $  D $
 +
that cannot be holomorphically continued to  $  z _ {0} $.
 +
For example, if  $  D $
 +
is an arbitrary domain in  $  \mathbf C  ^ {1} $,
 +
then the function  $  ( z - z _ {0} )  ^ {-} 1 $
 +
is a barrier at any point  $  z _ {0} \in \partial  D $,
 +
so that  $  D $
 +
is a domain of holomorphy; if  $  D $
 +
is a convex domain in  $  \mathbf C  ^ {n} $
 +
and if
 +
 
 +
$$
 +
\mathop{\rm Re}  ( a, z - z _ {0} )  = \
 +
\mathop{\rm Re}  \sum _ {i = 1 } ^ { n }
 +
a _ {i} ( z _ {i} - z _ {0i} )  =  0
 +
$$
 +
 
 +
is the supporting plane at a point $  z _ {0} \in \partial  D $,  
 +
then the function $  ( a, z - z _ {0} )  ^ {-} 1 $
 +
is a barrier at $  z _ {0} $,  
 +
and for this reason any convex domain in $  \mathbf C  ^ {n} $
 +
is a domain of holomorphy.
  
 
The intersection of domains of holomorphy is a domain of holomorphy; any [[Biholomorphic mapping|biholomorphic mapping]] maps a domain of holomorphy onto a domain of holomorphy (the Behnke–Stein theorem).
 
The intersection of domains of holomorphy is a domain of holomorphy; any [[Biholomorphic mapping|biholomorphic mapping]] maps a domain of holomorphy onto a domain of holomorphy (the Behnke–Stein theorem).
  
A domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379041.png" /> is said to be pseudo-convex if the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379042.png" /> is a [[Plurisubharmonic function|plurisubharmonic function]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379043.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379044.png" /> is the distance from the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379045.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379046.png" />. A domain is a domain of holomorphy if and only if it is pseudo-convex (Oka's theorem). That, in Oka's theorem, this condition is sufficient, forms the content of the Levi problem, formulated by E. Levi in 1911. It was solved by K. Oka in 1942 for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379047.png" />; it was solved independently by Oka, F. Norguet and H. Bremermann in 1953–1954 for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379048.png" />.
+
A domain $  D \subset  \mathbf C  ^ {n} $
 +
is said to be pseudo-convex if the function $  -  \mathop{\rm ln}  \Delta _ {D} ( z) $
 +
is a [[Plurisubharmonic function|plurisubharmonic function]] in $  D $,  
 +
where $  \Delta _ {D} ( z) $
 +
is the distance from the point $  z \in D $
 +
to $  \partial  D $.  
 +
A domain is a domain of holomorphy if and only if it is pseudo-convex (Oka's theorem). That, in Oka's theorem, this condition is sufficient, forms the content of the Levi problem, formulated by E. Levi in 1911. It was solved by K. Oka in 1942 for $  n = 2 $;  
 +
it was solved independently by Oka, F. Norguet and H. Bremermann in 1953–1954 for $  n \geq  2 $.
  
A domain of holomorphy with a sufficiently smooth boundary can be locally described. A domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379049.png" /> is said to be pseudo-convex at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379050.png" /> if there exists a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379051.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379052.png" /> and a real-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379053.png" /> of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379054.png" /> such that: a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379055.png" />; and b) on the plane
+
A domain of holomorphy with a sufficiently smooth boundary can be locally described. A domain $  D \subset  \mathbf C  ^ {n} $
 +
is said to be pseudo-convex at a point $  z _ {0} \in \partial  D $
 +
if there exists a neighbourhood $  V $
 +
of $  z _ {0} $
 +
and a real-valued function $  \phi ( z) $
 +
of class $  C  ^ {2} $
 +
such that: a)  $  D \cap V = \{ {z } : {\phi ( z) < 0,  z \in V } \} $;  
 +
and b) on the plane
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379056.png" /></td> </tr></table>
+
$$
 +
\sum _ {i = 1 } ^ { n }
 +
a _ {i}
 +
\frac{\partial  \phi ( z _ {0} ) }{\partial  z _ {i} }
 +
  = 0
 +
$$
  
 
the Hessian form
 
the Hessian form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379057.png" /></td> </tr></table>
+
$$
 +
\sum _ {i, k = 1 } ^ { n }
 +
 
 +
\frac{\partial  ^ {2} \phi ( z _ {0} ) }{\partial  z _ {i} \partial  \overline{ {z _ {k} }}\; }
 +
 
 +
a _ {i} \overline{ {a _ {k} }}\; \geq  0.
 +
$$
  
If in condition b) strict inequality holds for all vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379058.png" /> under consideration, the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379059.png" /> is said to be strictly pseudo-convex at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379060.png" />. A domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379061.png" /> is said to be (strictly) pseudo-convex in the sense of Levi if it is (strictly) pseudo-convex at all points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379062.png" />.
+
If in condition b) strict inequality holds for all vectors $  a \neq 0 $
 +
under consideration, the domain $  D $
 +
is said to be strictly pseudo-convex at the point $  z _ {0} $.  
 +
A domain $  D $
 +
is said to be (strictly) pseudo-convex in the sense of Levi if it is (strictly) pseudo-convex at all points $  z _ {0} \in \partial  D $.
  
 
If a domain is strictly pseudo-convex in the sense of Levi, it is pseudo-convex (Levi's theorem).
 
If a domain is strictly pseudo-convex in the sense of Levi, it is pseudo-convex (Levi's theorem).
  
The domain of holomorphy of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379063.png" />, defined in an initial neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379064.png" />, can be constructed by expansions into Taylor series using the principle of holomorphic continuation; it may then turn out that in the domain thus constructed the holomorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379065.png" /> is not single-valued. In order to make the function single-valued, the concept of a domain must be widened. This is done by the introduction of a Riemann (Riemannian) domain (a [[Covering domain|covering domain]], a multi-sheeted domain) over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379066.png" /> (a Riemann domain over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379067.png" /> is known as a [[Riemann surface|Riemann surface]]). The concept of a domain of holomorphy is generalized to Riemann domains and even to objects of a more general structure — complex manifolds and complex spaces. The generalization of the concept of a domain of holomorphy leads to Stein spaces (cf. [[Stein space|Stein space]]).
+
The domain of holomorphy of a function $  f( z) $,  
 +
defined in an initial neighbourhood $  V $,  
 +
can be constructed by expansions into Taylor series using the principle of holomorphic continuation; it may then turn out that in the domain thus constructed the holomorphic function $  f( z) $
 +
is not single-valued. In order to make the function single-valued, the concept of a domain must be widened. This is done by the introduction of a Riemann (Riemannian) domain (a [[Covering domain|covering domain]], a multi-sheeted domain) over $  \mathbf C  ^ {n} $(
 +
a Riemann domain over $  \mathbf C  ^ {1} $
 +
is known as a [[Riemann surface|Riemann surface]]). The concept of a domain of holomorphy is generalized to Riemann domains and even to objects of a more general structure — complex manifolds and complex spaces. The generalization of the concept of a domain of holomorphy leads to Stein spaces (cf. [[Stein space|Stein space]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.S. Vladimirov,  "Methods of the theory of functions of several complex variables" , M.I.T.  (1966)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''2''' , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L. Hörmander,  "An introduction to complex analysis in several variables" , North-Holland  (1973)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.S. Vladimirov,  "Methods of the theory of functions of several complex variables" , M.I.T.  (1966)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''2''' , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L. Hörmander,  "An introduction to complex analysis in several variables" , North-Holland  (1973)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 19:36, 5 June 2020


A domain $ D $ in a complex space $ \mathbf C ^ {n} $ for which there exists a function $ f( z) $, holomorphic in $ D $, that is not holomorphically extendable to a larger domain; the domain $ D $ is then called the natural domain of definition of $ f( z) $. For example, the natural domain of definition of the function

$$ \sum _ {k = 1 } ^ \infty z ^ {k!} $$

is the unit disc, which is thus a domain of holomorphy in $ \mathbf C ^ {1} $. Any domain in $ \mathbf C ^ {1} $ is a domain of holomorphy. In $ \mathbf C ^ {n} $, $ n \geq 2 $, on the contrary, not all domains are domains of holomorphy. E.g., no domain of the form $ D \setminus K $, where $ K $ is a compactum contained in $ D $, is a domain of holomorphy.

A domain $ D \subset \mathbf C ^ {n} $ is said to be holomorphically convex if for each compact set $ A \subset D $ there exists a compact set $ F _ {A} \subset D $ containing $ A $ such that for any point $ z _ {0} \in D \setminus F _ {A} $ there exists a holomorphic function $ f( z) $ in $ D $ such that

$$ \sup _ {z \in A } | f ( z) | < | f ( z _ {0} ) | . $$

A domain $ D $ is a domain of holomorphy if and only if it is holomorphically convex (the Cartan–Thullen theorem). A domain $ D $ is a domain of holomorphy if and only if each point $ z _ {0} \in \partial D $ has a barrier — a holomorphic function $ f _ {z _ {0} } ( z) $ in $ D $ that cannot be holomorphically continued to $ z _ {0} $. For example, if $ D $ is an arbitrary domain in $ \mathbf C ^ {1} $, then the function $ ( z - z _ {0} ) ^ {-} 1 $ is a barrier at any point $ z _ {0} \in \partial D $, so that $ D $ is a domain of holomorphy; if $ D $ is a convex domain in $ \mathbf C ^ {n} $ and if

$$ \mathop{\rm Re} ( a, z - z _ {0} ) = \ \mathop{\rm Re} \sum _ {i = 1 } ^ { n } a _ {i} ( z _ {i} - z _ {0i} ) = 0 $$

is the supporting plane at a point $ z _ {0} \in \partial D $, then the function $ ( a, z - z _ {0} ) ^ {-} 1 $ is a barrier at $ z _ {0} $, and for this reason any convex domain in $ \mathbf C ^ {n} $ is a domain of holomorphy.

The intersection of domains of holomorphy is a domain of holomorphy; any biholomorphic mapping maps a domain of holomorphy onto a domain of holomorphy (the Behnke–Stein theorem).

A domain $ D \subset \mathbf C ^ {n} $ is said to be pseudo-convex if the function $ - \mathop{\rm ln} \Delta _ {D} ( z) $ is a plurisubharmonic function in $ D $, where $ \Delta _ {D} ( z) $ is the distance from the point $ z \in D $ to $ \partial D $. A domain is a domain of holomorphy if and only if it is pseudo-convex (Oka's theorem). That, in Oka's theorem, this condition is sufficient, forms the content of the Levi problem, formulated by E. Levi in 1911. It was solved by K. Oka in 1942 for $ n = 2 $; it was solved independently by Oka, F. Norguet and H. Bremermann in 1953–1954 for $ n \geq 2 $.

A domain of holomorphy with a sufficiently smooth boundary can be locally described. A domain $ D \subset \mathbf C ^ {n} $ is said to be pseudo-convex at a point $ z _ {0} \in \partial D $ if there exists a neighbourhood $ V $ of $ z _ {0} $ and a real-valued function $ \phi ( z) $ of class $ C ^ {2} $ such that: a) $ D \cap V = \{ {z } : {\phi ( z) < 0, z \in V } \} $; and b) on the plane

$$ \sum _ {i = 1 } ^ { n } a _ {i} \frac{\partial \phi ( z _ {0} ) }{\partial z _ {i} } = 0 $$

the Hessian form

$$ \sum _ {i, k = 1 } ^ { n } \frac{\partial ^ {2} \phi ( z _ {0} ) }{\partial z _ {i} \partial \overline{ {z _ {k} }}\; } a _ {i} \overline{ {a _ {k} }}\; \geq 0. $$

If in condition b) strict inequality holds for all vectors $ a \neq 0 $ under consideration, the domain $ D $ is said to be strictly pseudo-convex at the point $ z _ {0} $. A domain $ D $ is said to be (strictly) pseudo-convex in the sense of Levi if it is (strictly) pseudo-convex at all points $ z _ {0} \in \partial D $.

If a domain is strictly pseudo-convex in the sense of Levi, it is pseudo-convex (Levi's theorem).

The domain of holomorphy of a function $ f( z) $, defined in an initial neighbourhood $ V $, can be constructed by expansions into Taylor series using the principle of holomorphic continuation; it may then turn out that in the domain thus constructed the holomorphic function $ f( z) $ is not single-valued. In order to make the function single-valued, the concept of a domain must be widened. This is done by the introduction of a Riemann (Riemannian) domain (a covering domain, a multi-sheeted domain) over $ \mathbf C ^ {n} $( a Riemann domain over $ \mathbf C ^ {1} $ is known as a Riemann surface). The concept of a domain of holomorphy is generalized to Riemann domains and even to objects of a more general structure — complex manifolds and complex spaces. The generalization of the concept of a domain of holomorphy leads to Stein spaces (cf. Stein space).

References

[1] V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)
[2] B.V. Shabat, "Introduction of complex analysis" , 2 , Moscow (1976) (In Russian)
[3] L. Hörmander, "An introduction to complex analysis in several variables" , North-Holland (1973)

Comments

The following is usually also considered as part of the above-mentioned Behnke–Stein theorem: The (countable) union of an increasing sequence of domains of holomorphy is a domain of holomorphy.

See Riemannian domain for the notion of "domain of holomorphy" on Riemann surfaces. For pseudo-convex domains, etc. see also Pseudo-convex and pseudo-concave.

How to Cite This Entry:
Domain of holomorphy. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Domain_of_holomorphy&oldid=12285
This article was adapted from an original article by V.S. Vladimirov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article