Namespaces
Variants
Actions

Difference between revisions of "Killing vector"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
k0554201.png
 +
$#A+1 = 46 n = 0
 +
$#C+1 = 46 : ~/encyclopedia/old_files/data/K055/K.0505420 Killing vector,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''more precisely, Killing vector field or infinitesimal motion''
 
''more precisely, Killing vector field or infinitesimal motion''
  
The field of velocities of a (local) one-parameter group of motions on a Riemannian manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k0554201.png" />. More precisely, a vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k0554202.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k0554203.png" /> is called a Killing vector field if it satisfies the Killing equation
+
The field of velocities of a (local) one-parameter group of motions on a Riemannian manifold $  M $.  
 +
More precisely, a vector field $  X $
 +
on $  M $
 +
is called a Killing vector field if it satisfies the Killing equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k0554204.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
L _ {X} g  = 0 ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k0554205.png" /> is the [[Lie derivative|Lie derivative]] along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k0554206.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k0554207.png" /> is the [[Riemannian metric|Riemannian metric]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k0554208.png" />. These fields were first systematically studied by W. Killing [[#References|[1]]], who also introduced equation (*) for them. In a complete Riemannian manifold any Killing vector field is complete, that is, it is the field of velocities of a one-parameter group of motions. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k0554209.png" /> of all Killing vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542010.png" /> forms a Lie algebra of dimension not exceeding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542011.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542012.png" />, and this dimension is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542013.png" /> only for spaces of constant curvature. The set of all complete Killing vector fields forms a subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542014.png" />, which is the Lie algebra of the group of motions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542015.png" />. The Lie derivative along the direction of a Killing vector field annihilates not only the metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542016.png" /> but also all fields that are canonically constructed in terms of the metric, for example, the Riemann curvature tensor, the Ricci operator, etc. This enables one to establish a connection between the properties of Killing vector fields and the curvature tensor. For example, at a point where all eigen values of the Ricci operator are distinct, a Killing vector field cannot vanish.
+
where $  L _ {X} $
 +
is the [[Lie derivative|Lie derivative]] along $  X $
 +
and $  g $
 +
is the [[Riemannian metric|Riemannian metric]] of $  M $.  
 +
These fields were first systematically studied by W. Killing [[#References|[1]]], who also introduced equation (*) for them. In a complete Riemannian manifold any Killing vector field is complete, that is, it is the field of velocities of a one-parameter group of motions. The set $  i ( M) $
 +
of all Killing vector fields on $  M $
 +
forms a Lie algebra of dimension not exceeding $  n ( n+ 1 ) / 2 $,  
 +
where $  n = \mathop{\rm dim}  M $,  
 +
and this dimension is equal to $  n ( n+ 1 ) /2 $
 +
only for spaces of constant curvature. The set of all complete Killing vector fields forms a subalgebra of $  i ( M) $,  
 +
which is the Lie algebra of the group of motions of $  M $.  
 +
The Lie derivative along the direction of a Killing vector field annihilates not only the metric $  g $
 +
but also all fields that are canonically constructed in terms of the metric, for example, the Riemann curvature tensor, the Ricci operator, etc. This enables one to establish a connection between the properties of Killing vector fields and the curvature tensor. For example, at a point where all eigen values of the Ricci operator are distinct, a Killing vector field cannot vanish.
  
A Killing vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542017.png" />, regarded as a function
+
A Killing vector field $  X $,  
 +
regarded as a function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542018.png" /></td> </tr></table>
+
$$
 +
X : T  ^ {*} M \ni \alpha  \rightarrow  \alpha ( X)
 +
$$
  
on the cotangent bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542019.png" />, is a first integral of the (Hamilton) geodesic flow on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542020.png" /> determined by the Riemannian metric. Analogously, a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542021.png" /> of contravariant symmetric tensors on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542022.png" /> is called a Killing tensor field if the function
+
on the cotangent bundle $  T  ^ {*} M $,  
 +
is a first integral of the (Hamilton) geodesic flow on $  T  ^ {*} M $
 +
determined by the Riemannian metric. Analogously, a field $  S $
 +
of contravariant symmetric tensors on $  M $
 +
is called a Killing tensor field if the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542023.png" /></td> </tr></table>
+
$$
 +
S : \alpha  \rightarrow  S ( \alpha \dots \alpha )
 +
$$
  
on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542024.png" /> (polynomial on the fibres) corresponding to it is a first integral of the geodesic flow. The equation determining a Killing tensor field is also called the Killing equation. The set of all Killing tensor fields, regarded as functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542025.png" />, forms a (generally infinite-dimensional) Lie algebra with respect to the Poisson brackets defined by the standard symplectic structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542026.png" />.
+
on $  T  ^ {*} M $(
 +
polynomial on the fibres) corresponding to it is a first integral of the geodesic flow. The equation determining a Killing tensor field is also called the Killing equation. The set of all Killing tensor fields, regarded as functions on $  T  ^ {*} M $,  
 +
forms a (generally infinite-dimensional) Lie algebra with respect to the Poisson brackets defined by the standard symplectic structure on $  T  ^ {*} M $.
  
More generally, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542027.png" /> be a geometric object of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542029.png" /> on the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542030.png" />, that is, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542031.png" />-equivariant mapping of the manifold of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542032.png" />-frames on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542033.png" /> into the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542034.png" /> on which the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542035.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542036.png" />-jets of diffeomorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542037.png" /> at zero (preserving the origin) acts. A vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542038.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542039.png" /> is called an infinitesimal automorphism, or a Killing field of the object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542040.png" />, if the corresponding (local) one-parameter group of transformations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542041.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542042.png" /> induces a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542043.png" /> of transformations of the manifold of frames <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542044.png" /> preserving <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542045.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542046.png" />. The equation determining a Killing field of the object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055420/k05542047.png" /> is called a Lie–Killing equation and the operator corresponding to it is called the Lie operator [[#References|[6]]].
+
More generally, let $  Q :   \mathop{\rm Rep}  ^ {k}  M \rightarrow W $
 +
be a geometric object of order k $
 +
on the manifold $  M $,  
 +
that is, a $  \mathop{\rm GL}  ^ {k} ( n) $-
 +
equivariant mapping of the manifold of k $-
 +
frames on $  M $
 +
into the space $  W $
 +
on which the group $  \mathop{\rm GL}  ^ {k} ( n) $
 +
of k $-
 +
jets of diffeomorphisms of $  \mathbf R  ^ {n} $
 +
at zero (preserving the origin) acts. A vector field $  X $
 +
on $  M $
 +
is called an infinitesimal automorphism, or a Killing field of the object $  Q $,  
 +
if the corresponding (local) one-parameter group of transformations $  \phi _ {t} $
 +
of $  M $
 +
induces a group $  \phi _ {t}  ^ {(} k) $
 +
of transformations of the manifold of frames $  \mathop{\rm Rep}  ^ {k}  M $
 +
preserving $  Q $:  
 +
$  Q \circ \phi _ {t}  ^ {(} k) = Q $.  
 +
The equation determining a Killing field of the object $  Q $
 +
is called a Lie–Killing equation and the operator corresponding to it is called the Lie operator [[#References|[6]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W. Killing,  "Ueber die Grundlagen der Geometrie"  ''J. Reine Angew. Math.'' , '''109'''  (1892)  pp. 121–186</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.K. [P.K. Rashevskii] Rashewski,  "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft.  (1959)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.P. Eisenhart,  "Riemannian geometry" , Princeton Univ. Press  (1949)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  S. Helgason,  "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press  (1978)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  S. Kobayashi,  "Transformation groups in differential geometry" , Springer  (1972)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A. Kumpera,  D. Spencer,  "Lie equations" , '''1. General theory''' , Princeton Univ. Press  (1972)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  S. Kobayashi,  K. Nomizu,  "Foundations of differential geometry" , '''2''' , Interscience  (1969)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  I.P. Egorov,  "Motions in spaces of affine connection" , ''Motions, spaces, affine connections'' , Kazan'  (1965)  pp. 5–179  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W. Killing,  "Ueber die Grundlagen der Geometrie"  ''J. Reine Angew. Math.'' , '''109'''  (1892)  pp. 121–186</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.K. [P.K. Rashevskii] Rashewski,  "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft.  (1959)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.P. Eisenhart,  "Riemannian geometry" , Princeton Univ. Press  (1949)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  S. Helgason,  "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press  (1978)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  S. Kobayashi,  "Transformation groups in differential geometry" , Springer  (1972)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A. Kumpera,  D. Spencer,  "Lie equations" , '''1. General theory''' , Princeton Univ. Press  (1972)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  S. Kobayashi,  K. Nomizu,  "Foundations of differential geometry" , '''2''' , Interscience  (1969)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  I.P. Egorov,  "Motions in spaces of affine connection" , ''Motions, spaces, affine connections'' , Kazan'  (1965)  pp. 5–179  (In Russian)</TD></TR></table>

Latest revision as of 22:14, 5 June 2020


more precisely, Killing vector field or infinitesimal motion

The field of velocities of a (local) one-parameter group of motions on a Riemannian manifold $ M $. More precisely, a vector field $ X $ on $ M $ is called a Killing vector field if it satisfies the Killing equation

$$ \tag{* } L _ {X} g = 0 , $$

where $ L _ {X} $ is the Lie derivative along $ X $ and $ g $ is the Riemannian metric of $ M $. These fields were first systematically studied by W. Killing [1], who also introduced equation (*) for them. In a complete Riemannian manifold any Killing vector field is complete, that is, it is the field of velocities of a one-parameter group of motions. The set $ i ( M) $ of all Killing vector fields on $ M $ forms a Lie algebra of dimension not exceeding $ n ( n+ 1 ) / 2 $, where $ n = \mathop{\rm dim} M $, and this dimension is equal to $ n ( n+ 1 ) /2 $ only for spaces of constant curvature. The set of all complete Killing vector fields forms a subalgebra of $ i ( M) $, which is the Lie algebra of the group of motions of $ M $. The Lie derivative along the direction of a Killing vector field annihilates not only the metric $ g $ but also all fields that are canonically constructed in terms of the metric, for example, the Riemann curvature tensor, the Ricci operator, etc. This enables one to establish a connection between the properties of Killing vector fields and the curvature tensor. For example, at a point where all eigen values of the Ricci operator are distinct, a Killing vector field cannot vanish.

A Killing vector field $ X $, regarded as a function

$$ X : T ^ {*} M \ni \alpha \rightarrow \alpha ( X) $$

on the cotangent bundle $ T ^ {*} M $, is a first integral of the (Hamilton) geodesic flow on $ T ^ {*} M $ determined by the Riemannian metric. Analogously, a field $ S $ of contravariant symmetric tensors on $ M $ is called a Killing tensor field if the function

$$ S : \alpha \rightarrow S ( \alpha \dots \alpha ) $$

on $ T ^ {*} M $( polynomial on the fibres) corresponding to it is a first integral of the geodesic flow. The equation determining a Killing tensor field is also called the Killing equation. The set of all Killing tensor fields, regarded as functions on $ T ^ {*} M $, forms a (generally infinite-dimensional) Lie algebra with respect to the Poisson brackets defined by the standard symplectic structure on $ T ^ {*} M $.

More generally, let $ Q : \mathop{\rm Rep} ^ {k} M \rightarrow W $ be a geometric object of order $ k $ on the manifold $ M $, that is, a $ \mathop{\rm GL} ^ {k} ( n) $- equivariant mapping of the manifold of $ k $- frames on $ M $ into the space $ W $ on which the group $ \mathop{\rm GL} ^ {k} ( n) $ of $ k $- jets of diffeomorphisms of $ \mathbf R ^ {n} $ at zero (preserving the origin) acts. A vector field $ X $ on $ M $ is called an infinitesimal automorphism, or a Killing field of the object $ Q $, if the corresponding (local) one-parameter group of transformations $ \phi _ {t} $ of $ M $ induces a group $ \phi _ {t} ^ {(} k) $ of transformations of the manifold of frames $ \mathop{\rm Rep} ^ {k} M $ preserving $ Q $: $ Q \circ \phi _ {t} ^ {(} k) = Q $. The equation determining a Killing field of the object $ Q $ is called a Lie–Killing equation and the operator corresponding to it is called the Lie operator [6].

References

[1] W. Killing, "Ueber die Grundlagen der Geometrie" J. Reine Angew. Math. , 109 (1892) pp. 121–186
[2] P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)
[3] L.P. Eisenhart, "Riemannian geometry" , Princeton Univ. Press (1949)
[4] S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978)
[5] S. Kobayashi, "Transformation groups in differential geometry" , Springer (1972)
[6] A. Kumpera, D. Spencer, "Lie equations" , 1. General theory , Princeton Univ. Press (1972)
[7] S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 2 , Interscience (1969)
[8] I.P. Egorov, "Motions in spaces of affine connection" , Motions, spaces, affine connections , Kazan' (1965) pp. 5–179 (In Russian)
How to Cite This Entry:
Killing vector. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Killing_vector&oldid=12161
This article was adapted from an original article by D.V. Alekseevskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article