Difference between revisions of "Rabinowitsch trick"
(Importing text file) |
m (AUTOMATIC EDIT (latexlist): Replaced 10 formulas out of 10 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
||
Line 1: | Line 1: | ||
− | This | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
− | + | Out of 10 formulas, 10 were replaced by TEX code.--> | |
− | + | {{TEX|semi-auto}}{{TEX|done}} | |
+ | This "trick" deduces the general Hilbert Nullstellensatz (cf. [[Hilbert theorem|Hilbert theorem]]) from the special case that the polynomials have no common zeros. Indeed, let $f , f _ { 1 } , \dots , f _ { m } \in R : = k [ x _ { 1 } , \dots , x _ { n } ]$, where $k$ is a [[Field|field]]. If $f$ vanishes on the common zeros of $f _ { 1 } , \ldots , f _ { m }$, then there are polynomials $a _ { 0 } , a _ { 1 } , \dots , a _ { m } \in R [ x _ { 0 } ]$ such that | ||
− | + | \begin{equation*} a _ { 0 } ( 1 - x _ { 0 } f ) + a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m } = 1. \end{equation*} | |
− | + | Substitution of $x _ { 0 } = 1 / f$ into this identity and clearing out the denominator shows that | |
+ | |||
+ | \begin{equation*} b _ { 1 } f _ { 1 } + \ldots + b _ { m } f _ { m } = f ^ { \mu }, \end{equation*} | ||
+ | |||
+ | where $\mu : = \operatorname { max } \operatorname { deg } _ { x _ { 0 } } a _ { i }$ and $b _ { j } = a _ { j } |_{x _ { 0 } = 1 / f} f ^ { \mu }$. This ingenious device was published in the one(!) page article [[#References|[a1]]]. | ||
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> J.L. Rabinowitsch, "Zum Hilbertschen Nullstellensatz" ''Math. Ann.'' , '''102''' (1929) pp. 520,}</td></tr></table> |
Latest revision as of 17:00, 1 July 2020
This "trick" deduces the general Hilbert Nullstellensatz (cf. Hilbert theorem) from the special case that the polynomials have no common zeros. Indeed, let $f , f _ { 1 } , \dots , f _ { m } \in R : = k [ x _ { 1 } , \dots , x _ { n } ]$, where $k$ is a field. If $f$ vanishes on the common zeros of $f _ { 1 } , \ldots , f _ { m }$, then there are polynomials $a _ { 0 } , a _ { 1 } , \dots , a _ { m } \in R [ x _ { 0 } ]$ such that
\begin{equation*} a _ { 0 } ( 1 - x _ { 0 } f ) + a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m } = 1. \end{equation*}
Substitution of $x _ { 0 } = 1 / f$ into this identity and clearing out the denominator shows that
\begin{equation*} b _ { 1 } f _ { 1 } + \ldots + b _ { m } f _ { m } = f ^ { \mu }, \end{equation*}
where $\mu : = \operatorname { max } \operatorname { deg } _ { x _ { 0 } } a _ { i }$ and $b _ { j } = a _ { j } |_{x _ { 0 } = 1 / f} f ^ { \mu }$. This ingenious device was published in the one(!) page article [a1].
References
[a1] | J.L. Rabinowitsch, "Zum Hilbertschen Nullstellensatz" Math. Ann. , 102 (1929) pp. 520,} |
Rabinowitsch trick. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rabinowitsch_trick&oldid=12019