Difference between revisions of "Hilbert singular integral"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | h0473701.png | ||
+ | $#A+1 = 20 n = 0 | ||
+ | $#C+1 = 20 : ~/encyclopedia/old_files/data/H047/H.0407370 Hilbert singular integral | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The improper integral (in the sense of the Cauchy principal value) | The improper integral (in the sense of the Cauchy principal value) | ||
− | + | $$ | |
+ | \widetilde{f} ( x) = \ | ||
+ | { | ||
+ | \frac{1}{2 \pi } | ||
+ | } | ||
+ | \int\limits _ { 0 } ^ { {2 } \pi } | ||
+ | f ( t) \mathop{\rm cotan} | ||
+ | \frac{x - t }{2 } | ||
+ | dt, | ||
+ | $$ | ||
− | where the periodic function | + | where the periodic function $ f $ |
+ | is called the density of the Hilbert singular integral, while $ \mathop{\rm cotan} \{ {( x - t)/2 } \} $ | ||
+ | is called its kernel. If $ f $ | ||
+ | is summable, $ \widetilde{f} $ | ||
+ | exists almost-everywhere; if $ f $ | ||
+ | satisfies the Lipschitz condition of order $ \alpha $, | ||
+ | $ 0 < \alpha < 1 $, | ||
+ | $ \widetilde{f} $ | ||
+ | exists for any $ x $ | ||
+ | and satisfies this condition as well. If $ f $ | ||
+ | has summable $ p $- | ||
+ | th power, $ p > 1 $, | ||
+ | $ \widetilde{f} $ | ||
+ | has the same property, and | ||
− | + | $$ | |
+ | \left \{ \int\limits _ { 0 } ^ { {2 } \pi } | ||
+ | | \widetilde{f} ( x) | ^ {p} dx \right \} ^ {1/p} \leq M _ {p} \left \{ \int\limits _ { 0 } ^ { {2 } \pi } | ||
+ | | f ( x) | ^ {p} dx \right \} ^ {1/p} , | ||
+ | $$ | ||
− | where | + | where $ M _ {p} $ |
+ | is a constant independent of $ f $. | ||
+ | In addition, the inversion formula of Hilbert's singular integral, | ||
− | + | $$ | |
+ | f ( x) = \ | ||
+ | { | ||
+ | \frac{1}{2 \pi } | ||
+ | } | ||
+ | \int\limits _ { 0 } ^ { {2 } \pi } | ||
+ | \widetilde{f} ( t) \mathop{\rm cotan} | ||
+ | \frac{t - x }{2 } | ||
+ | dt + | ||
+ | { | ||
+ | \frac{1}{2 \pi } | ||
+ | } | ||
+ | \int\limits _ { 0 } ^ { {2 } \pi } f ( t) dt , | ||
+ | $$ | ||
− | is valid. The function | + | is valid. The function $ \widetilde{f} $ |
+ | is said to be conjugate with $ f $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Hilbert, "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Riesz, "Sur les fonctions conjugées" ''Math. Z.'' , '''27''' (1927) pp. 218–244</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.I. Muskhelishvili, "Singular integral equations" , Wolters-Noordhoff (1972) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Hilbert, "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Riesz, "Sur les fonctions conjugées" ''Math. Z.'' , '''27''' (1927) pp. 218–244</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.I. Muskhelishvili, "Singular integral equations" , Wolters-Noordhoff (1972) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 22:10, 5 June 2020
The improper integral (in the sense of the Cauchy principal value)
$$ \widetilde{f} ( x) = \ { \frac{1}{2 \pi } } \int\limits _ { 0 } ^ { {2 } \pi } f ( t) \mathop{\rm cotan} \frac{x - t }{2 } dt, $$
where the periodic function $ f $ is called the density of the Hilbert singular integral, while $ \mathop{\rm cotan} \{ {( x - t)/2 } \} $ is called its kernel. If $ f $ is summable, $ \widetilde{f} $ exists almost-everywhere; if $ f $ satisfies the Lipschitz condition of order $ \alpha $, $ 0 < \alpha < 1 $, $ \widetilde{f} $ exists for any $ x $ and satisfies this condition as well. If $ f $ has summable $ p $- th power, $ p > 1 $, $ \widetilde{f} $ has the same property, and
$$ \left \{ \int\limits _ { 0 } ^ { {2 } \pi } | \widetilde{f} ( x) | ^ {p} dx \right \} ^ {1/p} \leq M _ {p} \left \{ \int\limits _ { 0 } ^ { {2 } \pi } | f ( x) | ^ {p} dx \right \} ^ {1/p} , $$
where $ M _ {p} $ is a constant independent of $ f $. In addition, the inversion formula of Hilbert's singular integral,
$$ f ( x) = \ { \frac{1}{2 \pi } } \int\limits _ { 0 } ^ { {2 } \pi } \widetilde{f} ( t) \mathop{\rm cotan} \frac{t - x }{2 } dt + { \frac{1}{2 \pi } } \int\limits _ { 0 } ^ { {2 } \pi } f ( t) dt , $$
is valid. The function $ \widetilde{f} $ is said to be conjugate with $ f $.
References
[1] | D. Hilbert, "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint (1953) |
[2] | M. Riesz, "Sur les fonctions conjugées" Math. Z. , 27 (1927) pp. 218–244 |
[3] | N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian) |
[4] | N.I. Muskhelishvili, "Singular integral equations" , Wolters-Noordhoff (1972) (Translated from Russian) |
Comments
See also Hilbert kernel; Hilbert transform.
References
[a1] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) |
[a2] | B.L. Moiseiwitsch, "Integral equations" , Longman (1977) |
Hilbert singular integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_singular_integral&oldid=11933