Namespaces
Variants
Actions

Difference between revisions of "Spline interpolation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Interpolation by means of splines (cf. [[Spline|Spline]]), that is, the construction of an [[Interpolation spline|interpolation spline]] taking given values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s0868201.png" /> at prescribed points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s0868202.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s0868203.png" />. Interpolation splines usually satisfy further conditions at the end points. E.g., for the cubic spline <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s0868204.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s0868205.png" /> is the partition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s0868206.png" />, which, on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s0868207.png" />, consists of piecewise-cubic polynomials and has a continuous second-order derivative, one requires that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s0868208.png" /> and, in addition, one condition at each end point (e.g., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s0868209.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682010.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682012.png" />). If the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682013.png" /> are the values of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682014.png" />-periodic function, then one requires the spline to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682015.png" />-periodic also. For polynomial splines of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682016.png" />, the number of extra conditions at each end point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682017.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682018.png" /> is increased by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682019.png" />. For interpolation splines of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682020.png" />, the knots of the spline (the points of discontinuity of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682021.png" />-th derivative) are usually chosen halfway between the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682022.png" />, and a further <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682023.png" /> conditions are assigned at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682025.png" />.
+
<!--
 +
s0868201.png
 +
$#A+1 = 45 n = 0
 +
$#C+1 = 45 : ~/encyclopedia/old_files/data/S086/S.0806820 Spline interpolation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Spline interpolation has some advantages when compared to polynomial [[Interpolation|interpolation]]. E.g., there are sequences of partitions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682026.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682027.png" /> and interpolation splines for which the interpolation process converges for any continuous function, provided that
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682028.png" /></td> </tr></table>
+
Interpolation by means of splines (cf. [[Spline|Spline]]), that is, the construction of an [[Interpolation spline|interpolation spline]] taking given values  $  f ( x _ {i} ) $
 +
at prescribed points  $  x _ {i} $,
 +
$  i= 0 \dots n $.
 +
Interpolation splines usually satisfy further conditions at the end points. E.g., for the cubic spline  $  S _ {3} ( \Delta _ {n} , x ) $,
 +
where  $  \Delta _ {n} $
 +
is the partition  $  a= x _ {0} \leq  x _ {1} \leq  \dots \leq  x _ {n} = b $,
 +
which, on  $  [ a, b] $,
 +
consists of piecewise-cubic polynomials and has a continuous second-order derivative, one requires that  $  S _ {3} ( \Delta _ {n} , x _ {i} ) = f ( x _ {i} ) $
 +
and, in addition, one condition at each end point (e.g.,  $  S _ {3}  ^  \prime  ( \Delta _ {n} , a) = y _ {0}  ^  \prime  $
 +
and  $  S _ {3}  ^  \prime  ( \Delta _ {n} , b) = y _ {n}  ^  \prime  $,
 +
or  $  S _ {3}  ^ {\prime\prime} ( \Delta _ {n} , a) = y _ {0}  ^ {\prime\prime} $
 +
and  $  S _ {3}  ^ {\prime\prime} ( \Delta _ {n} , b) = y _ {n}  ^ {\prime\prime} $).
 +
If the  $  f( x _ {i} ) $
 +
are the values of a  $  ( b- a) $-
 +
periodic function, then one requires the spline to be  $  ( b- a) $-
 +
periodic also. For polynomial splines of degree  $  2k+ 1 $,
 +
the number of extra conditions at each end point  $  a $
 +
or  $  b $
 +
is increased by  $  k $.  
 +
For interpolation splines of degree  $  2k $,
 +
the knots of the spline (the points of discontinuity of the  $  2k $-
 +
th derivative) are usually chosen halfway between the points  $  x _ {i} $,
 +
and a further  $  k $
 +
conditions are assigned at  $  a $
 +
and  $  b $.
  
Many processes of spline interpolation give the same order of approximation as the [[Best approximation|best approximation]]. Moreover, spline interpolation of some classes of differentiable functions has the property that the error does not exceed the [[Width|width]] of the corresponding class. Spline interpolation can be used to solve certain variational problems. E.g., under sufficiently general additional conditions at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682030.png" />, interpolation splines satisfy the relation:
+
Spline interpolation has some advantages when compared to polynomial [[Interpolation|interpolation]]. E.g., there are sequences of partitions  $  \Delta _ {n} $:
 +
$  a = x _ {0}  ^ {(} k) < x _ {1}  ^ {(} k) < \dots < x _ {n _ {k}  }  ^ {(} k) = b $
 +
and interpolation splines for which the interpolation process converges for any continuous function, provided that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682031.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$
 +
\| \Delta _ {n _ {k}  } \|  = \max _ {0 \leq  i \leq  n _ {k} - 1 } \
 +
( x _ {i+} 1 ^ {(} k) - x _ {i}  ^ {(} k) )  \rightarrow  0.
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682032.png" /></td> </tr></table>
+
Many processes of spline interpolation give the same order of approximation as the [[Best approximation|best approximation]]. Moreover, spline interpolation of some classes of differentiable functions has the property that the error does not exceed the [[Width|width]] of the corresponding class. Spline interpolation can be used to solve certain variational problems. E.g., under sufficiently general additional conditions at  $  a $
 +
and  $  b $,
 +
interpolation splines satisfy the relation:
 +
 
 +
$$ \tag{1 }
 +
\int\limits _ { a } ^ { b }  [ f ^ { ( m) } ( t) - S _ {2m-} 1  ^ {(} m) ( \Delta _ {n} , t) ]  ^ {2}  dt =
 +
$$
 +
 
 +
$$
 +
= \
 +
\int\limits _ { a } ^ { b }  [ f ^ { ( m) } ( t) ]  ^ {2}  dt - \int\limits _ { a } ^ { b }  [ S _ {2m-} 1  ^ {(} m) ( \Delta _ {n} , t) ]  ^ {2}  dt.
 +
$$
  
 
This implies the existence and uniqueness of interpolation splines of odd degree, and also the simplest results on convergence:
 
This implies the existence and uniqueness of interpolation splines of odd degree, and also the simplest results on convergence:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682033.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2a)</td></tr></table>
+
$$ \tag{2a }
 +
\| f ^ { ( i) } ( t) - S _ {2m-} 1  ^ {(} i) ( \Delta _ {n} , t) \| _ {L _ {2}  [ a, b] } \leq
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682034.png" /></td> </tr></table>
+
$$
 +
\leq  \
 +
c _ {i,m} \| \Delta _ {n} \|  ^ {m-} i \| f ^ { ( m) } ( t) \| _ {L _ {2}  [ a, b] } ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682035.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2b)</td></tr></table>
+
$$ \tag{2b }
 +
\| f ^ { ( i) } ( t) - S _ {2m-} 1  ^ {(} i) ( \Delta _ {n} , t) \| _ {C [ a, b] }  \leq
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682036.png" /></td> </tr></table>
+
$$
 +
\leq  \
 +
c _ {i,m} \| \Delta _ {n} \| ^ {m- i - 1/2 } \| f ^ { ( m) } ( t)
 +
\| _ {L _ {2}  [ a, b] } ,
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682037.png" />, where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682038.png" /> depend only on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682040.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682041.png" />. For some classes of differentiable functions, the sequence of interpolation splines converges to the function to be interpolated on any sequence of partitions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682042.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682043.png" /> (this occurs in case (2a)–(2b)).
+
$  i = 0 \dots m- 1 $,  
 +
where the $  c _ {i,m} $
 +
depend only on $  i $
 +
and $  m $,  
 +
and $  \| \Delta _ {n} \| = \max _ {0 \leq  i \leq  n- 1 }  ( x _ {i+} 1 - x _ {i} ) $.  
 +
For some classes of differentiable functions, the sequence of interpolation splines converges to the function to be interpolated on any sequence of partitions $  \Delta _ {n _ {k}  } $
 +
for which $  \| \Delta _ {n _ {k}  } \| \rightarrow 0 $(
 +
this occurs in case (2a)–(2b)).
  
In addition to polynomial interpolation splines, one can also use splines of a more general form (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682044.png" />-splines or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086820/s08682045.png" />-splines). For many of these, results analogous to (1) and (2a)–(2b) also hold. For splines with defect greater than 1 one usually carries out interpolation with multiple knots.
+
In addition to polynomial interpolation splines, one can also use splines of a more general form ( $  L $-
 +
splines or $  L _ {g} $-
 +
splines). For many of these, results analogous to (1) and (2a)–(2b) also hold. For splines with defect greater than 1 one usually carries out interpolation with multiple knots.
  
 
See also [[Spline approximation|Spline approximation]].
 
See also [[Spline approximation|Spline approximation]].
  
 
For references see [[Spline|Spline]].
 
For references see [[Spline|Spline]].
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T. Lyche,  L.L. Schumaker,  "On the convergence of cubic interpolating splines"  A. Meir (ed.)  A. Sharma (ed.) , ''Spline Functions and Approximation Theory'' , Birkhäuser  (1973)  pp. 169–189</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  Yu.N. Subbotin,  "Interpolating splines"  Z. Cieselski (ed.)  J. Musielak (ed.) , ''Approximation Theory'' , Reidel  (1975)  pp. 221–234</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.J. Schoenberg,  "Cardinal spline interpolation" , SIAM  (1973)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  P.M. Prenter,  "Splines and variational methods" , Wiley  (1975)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T. Lyche,  L.L. Schumaker,  "On the convergence of cubic interpolating splines"  A. Meir (ed.)  A. Sharma (ed.) , ''Spline Functions and Approximation Theory'' , Birkhäuser  (1973)  pp. 169–189</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  Yu.N. Subbotin,  "Interpolating splines"  Z. Cieselski (ed.)  J. Musielak (ed.) , ''Approximation Theory'' , Reidel  (1975)  pp. 221–234</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.J. Schoenberg,  "Cardinal spline interpolation" , SIAM  (1973)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  P.M. Prenter,  "Splines and variational methods" , Wiley  (1975)</TD></TR></table>

Latest revision as of 08:22, 6 June 2020


Interpolation by means of splines (cf. Spline), that is, the construction of an interpolation spline taking given values $ f ( x _ {i} ) $ at prescribed points $ x _ {i} $, $ i= 0 \dots n $. Interpolation splines usually satisfy further conditions at the end points. E.g., for the cubic spline $ S _ {3} ( \Delta _ {n} , x ) $, where $ \Delta _ {n} $ is the partition $ a= x _ {0} \leq x _ {1} \leq \dots \leq x _ {n} = b $, which, on $ [ a, b] $, consists of piecewise-cubic polynomials and has a continuous second-order derivative, one requires that $ S _ {3} ( \Delta _ {n} , x _ {i} ) = f ( x _ {i} ) $ and, in addition, one condition at each end point (e.g., $ S _ {3} ^ \prime ( \Delta _ {n} , a) = y _ {0} ^ \prime $ and $ S _ {3} ^ \prime ( \Delta _ {n} , b) = y _ {n} ^ \prime $, or $ S _ {3} ^ {\prime\prime} ( \Delta _ {n} , a) = y _ {0} ^ {\prime\prime} $ and $ S _ {3} ^ {\prime\prime} ( \Delta _ {n} , b) = y _ {n} ^ {\prime\prime} $). If the $ f( x _ {i} ) $ are the values of a $ ( b- a) $- periodic function, then one requires the spline to be $ ( b- a) $- periodic also. For polynomial splines of degree $ 2k+ 1 $, the number of extra conditions at each end point $ a $ or $ b $ is increased by $ k $. For interpolation splines of degree $ 2k $, the knots of the spline (the points of discontinuity of the $ 2k $- th derivative) are usually chosen halfway between the points $ x _ {i} $, and a further $ k $ conditions are assigned at $ a $ and $ b $.

Spline interpolation has some advantages when compared to polynomial interpolation. E.g., there are sequences of partitions $ \Delta _ {n} $: $ a = x _ {0} ^ {(} k) < x _ {1} ^ {(} k) < \dots < x _ {n _ {k} } ^ {(} k) = b $ and interpolation splines for which the interpolation process converges for any continuous function, provided that

$$ \| \Delta _ {n _ {k} } \| = \max _ {0 \leq i \leq n _ {k} - 1 } \ ( x _ {i+} 1 ^ {(} k) - x _ {i} ^ {(} k) ) \rightarrow 0. $$

Many processes of spline interpolation give the same order of approximation as the best approximation. Moreover, spline interpolation of some classes of differentiable functions has the property that the error does not exceed the width of the corresponding class. Spline interpolation can be used to solve certain variational problems. E.g., under sufficiently general additional conditions at $ a $ and $ b $, interpolation splines satisfy the relation:

$$ \tag{1 } \int\limits _ { a } ^ { b } [ f ^ { ( m) } ( t) - S _ {2m-} 1 ^ {(} m) ( \Delta _ {n} , t) ] ^ {2} dt = $$

$$ = \ \int\limits _ { a } ^ { b } [ f ^ { ( m) } ( t) ] ^ {2} dt - \int\limits _ { a } ^ { b } [ S _ {2m-} 1 ^ {(} m) ( \Delta _ {n} , t) ] ^ {2} dt. $$

This implies the existence and uniqueness of interpolation splines of odd degree, and also the simplest results on convergence:

$$ \tag{2a } \| f ^ { ( i) } ( t) - S _ {2m-} 1 ^ {(} i) ( \Delta _ {n} , t) \| _ {L _ {2} [ a, b] } \leq $$

$$ \leq \ c _ {i,m} \| \Delta _ {n} \| ^ {m-} i \| f ^ { ( m) } ( t) \| _ {L _ {2} [ a, b] } , $$

$$ \tag{2b } \| f ^ { ( i) } ( t) - S _ {2m-} 1 ^ {(} i) ( \Delta _ {n} , t) \| _ {C [ a, b] } \leq $$

$$ \leq \ c _ {i,m} \| \Delta _ {n} \| ^ {m- i - 1/2 } \| f ^ { ( m) } ( t) \| _ {L _ {2} [ a, b] } , $$

$ i = 0 \dots m- 1 $, where the $ c _ {i,m} $ depend only on $ i $ and $ m $, and $ \| \Delta _ {n} \| = \max _ {0 \leq i \leq n- 1 } ( x _ {i+} 1 - x _ {i} ) $. For some classes of differentiable functions, the sequence of interpolation splines converges to the function to be interpolated on any sequence of partitions $ \Delta _ {n _ {k} } $ for which $ \| \Delta _ {n _ {k} } \| \rightarrow 0 $( this occurs in case (2a)–(2b)).

In addition to polynomial interpolation splines, one can also use splines of a more general form ( $ L $- splines or $ L _ {g} $- splines). For many of these, results analogous to (1) and (2a)–(2b) also hold. For splines with defect greater than 1 one usually carries out interpolation with multiple knots.

See also Spline approximation.

For references see Spline.

Comments

References

[a1] T. Lyche, L.L. Schumaker, "On the convergence of cubic interpolating splines" A. Meir (ed.) A. Sharma (ed.) , Spline Functions and Approximation Theory , Birkhäuser (1973) pp. 169–189
[a2] Yu.N. Subbotin, "Interpolating splines" Z. Cieselski (ed.) J. Musielak (ed.) , Approximation Theory , Reidel (1975) pp. 221–234
[a3] I.J. Schoenberg, "Cardinal spline interpolation" , SIAM (1973)
[a4] P.M. Prenter, "Splines and variational methods" , Wiley (1975)
How to Cite This Entry:
Spline interpolation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spline_interpolation&oldid=11892
This article was adapted from an original article by Yu.N. Subbotin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article