Difference between revisions of "Mercer theorem"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | m0634401.png | ||
+ | $#A+1 = 15 n = 0 | ||
+ | $#C+1 = 15 : ~/encyclopedia/old_files/data/M063/M.0603440 Mercer theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The bilinear series | The bilinear series | ||
− | + | $$ | |
+ | \sum _ { m } | ||
+ | \frac{\phi _ {m} ( s) \overline{ {\phi _ {m} ( t) }}\; }{ | ||
+ | \lambda _ {m} } | ||
+ | |||
+ | $$ | ||
− | of a Hermitian positive-definite continuous kernel | + | of a Hermitian positive-definite continuous kernel $ K( s, t) $ |
+ | on $ D \times D $( | ||
+ | cf. [[Integral equation with symmetric kernel|Integral equation with symmetric kernel]]; [[Kernel of an integral operator|Kernel of an integral operator]]), where $ D $ | ||
+ | is the closure of a bounded domain in $ \mathbf R ^ {n} $, | ||
+ | converges absolutely and uniformly in $ D \times D $ | ||
+ | to $ K( s, t) $. | ||
+ | Here the $ \lambda _ {m} $ | ||
+ | are the characteristic numbers of the kernel $ K( s, t) $ | ||
+ | and the $ \phi _ {m} ( s) $ | ||
+ | are the corresponding orthonormalized eigen functions. If a kernel $ K $ | ||
+ | satisfies the conditions of Mercer's theorem, then the integral operator $ T: L _ {2} ( D) \rightarrow L _ {2} ( D) $, | ||
− | + | $$ | |
+ | Tf( s) = \int\limits _ { D } K( s, t) f( t) dt = \ | ||
+ | \sum _ { m } | ||
+ | \frac{1}{\lambda _ {m} } | ||
+ | ( f, \phi _ {m} ) \phi _ {m} $$ | ||
− | is nuclear (cf. [[Nuclear operator|Nuclear operator]]) and its [[Trace|trace]] | + | is nuclear (cf. [[Nuclear operator|Nuclear operator]]) and its [[Trace|trace]] $ \sum _ {m} 1/ \lambda _ {m} $ |
+ | can be calculated by the formula | ||
− | + | $$ | |
+ | \sum _ { m } | ||
+ | \frac{1}{\lambda _ {m} } | ||
+ | = \ | ||
+ | \int\limits _ { D } K( s, s) ds. | ||
+ | $$ | ||
Mercer's theorem can be generalized to the case of a bounded discontinuous kernel. | Mercer's theorem can be generalized to the case of a bounded discontinuous kernel. | ||
Line 17: | Line 54: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Mercer, ''Philos. Trans. Roy. Soc. London Ser. A'' , '''209''' (1909) pp. 415–446</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Mercer, "Functions of positive and negative type, and their connection with the theory of integral equations" ''Proc. Roy. Soc. London Ser. A'' , '''83''' (1908) pp. 69–70</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.G. Petrovskii, "Lectures on the theory of integral equations" , Graylock (1957) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> F.G. Tricomi, "Integral equations" , Interscience (1957)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.A. Krasnosel'skii, et al., "Integral operators in spaces of summable functions" , Noordhoff (1976) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Mercer, ''Philos. Trans. Roy. Soc. London Ser. A'' , '''209''' (1909) pp. 415–446</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Mercer, "Functions of positive and negative type, and their connection with the theory of integral equations" ''Proc. Roy. Soc. London Ser. A'' , '''83''' (1908) pp. 69–70</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.G. Petrovskii, "Lectures on the theory of integral equations" , Graylock (1957) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> F.G. Tricomi, "Integral equations" , Interscience (1957)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.A. Krasnosel'skii, et al., "Integral operators in spaces of summable functions" , Noordhoff (1976) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.C. Zaanen, "Linear analysis" , North-Holland (1956)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.C. Zaanen, "Linear analysis" , North-Holland (1956)</TD></TR></table> |
Latest revision as of 08:00, 6 June 2020
The bilinear series
$$ \sum _ { m } \frac{\phi _ {m} ( s) \overline{ {\phi _ {m} ( t) }}\; }{ \lambda _ {m} } $$
of a Hermitian positive-definite continuous kernel $ K( s, t) $ on $ D \times D $( cf. Integral equation with symmetric kernel; Kernel of an integral operator), where $ D $ is the closure of a bounded domain in $ \mathbf R ^ {n} $, converges absolutely and uniformly in $ D \times D $ to $ K( s, t) $. Here the $ \lambda _ {m} $ are the characteristic numbers of the kernel $ K( s, t) $ and the $ \phi _ {m} ( s) $ are the corresponding orthonormalized eigen functions. If a kernel $ K $ satisfies the conditions of Mercer's theorem, then the integral operator $ T: L _ {2} ( D) \rightarrow L _ {2} ( D) $,
$$ Tf( s) = \int\limits _ { D } K( s, t) f( t) dt = \ \sum _ { m } \frac{1}{\lambda _ {m} } ( f, \phi _ {m} ) \phi _ {m} $$
is nuclear (cf. Nuclear operator) and its trace $ \sum _ {m} 1/ \lambda _ {m} $ can be calculated by the formula
$$ \sum _ { m } \frac{1}{\lambda _ {m} } = \ \int\limits _ { D } K( s, s) ds. $$
Mercer's theorem can be generalized to the case of a bounded discontinuous kernel.
The theorem was proved by J. Mercer [1].
References
[1] | J. Mercer, Philos. Trans. Roy. Soc. London Ser. A , 209 (1909) pp. 415–446 |
[2] | J. Mercer, "Functions of positive and negative type, and their connection with the theory of integral equations" Proc. Roy. Soc. London Ser. A , 83 (1908) pp. 69–70 |
[3] | I.G. Petrovskii, "Lectures on the theory of integral equations" , Graylock (1957) (Translated from Russian) |
[4] | F.G. Tricomi, "Integral equations" , Interscience (1957) |
[5] | M.A. Krasnosel'skii, et al., "Integral operators in spaces of summable functions" , Noordhoff (1976) (Translated from Russian) |
Comments
References
[a1] | I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1977) |
[a2] | A.C. Zaanen, "Linear analysis" , North-Holland (1956) |
Mercer theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mercer_theorem&oldid=11889