Difference between revisions of "Local uniformizing parameter"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | l0602401.png | ||
+ | $#A+1 = 62 n = 0 | ||
+ | $#C+1 = 62 : ~/encyclopedia/old_files/data/L060/L.0600240 Local uniformizing parameter, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''local uniformizer, local parameter'' | ''local uniformizer, local parameter'' | ||
− | A complex variable | + | A complex variable $ t $ |
+ | defined as a continuous function $ t _ {p _ {0} } = \phi _ {p _ {0} } ( p) $ | ||
+ | of a point $ p $ | ||
+ | on a [[Riemann surface|Riemann surface]] $ R $, | ||
+ | defined everywhere in some neighbourhood $ V ( p _ {0} ) $ | ||
+ | of a point $ p _ {0} \in R $ | ||
+ | and realizing a homeomorphic mapping of $ V ( p _ {0} ) $ | ||
+ | onto the disc $ D ( p _ {0} ) = \{ {t \in \mathbf C } : {| t | < r ( p _ {0} ) } \} $, | ||
+ | where $ \phi _ {p _ {0} } ( p _ {0} ) = 0 $. | ||
+ | Here $ V ( p _ {0} ) $ | ||
+ | is said to be a distinguished or parametric neighbourhood, $ \phi _ {p _ {0} } : V ( p _ {0} ) \rightarrow D ( p _ {0} ) $ | ||
+ | a distinguished or parametric mapping, and $ D ( p _ {0} ) $ | ||
+ | a distinguished or parametric disc. Under a parametric mapping any point function $ g ( p) $, | ||
+ | defined in a parametric neighbourhood $ V ( p _ {0} ) $, | ||
+ | goes into a function of the local uniformizing parameter $ t $, | ||
+ | that is, $ g ( p) = g [ \phi _ {p _ {0} } ^ {-} 1 ( t) ] = G ( t) $. | ||
+ | If $ V ( p _ {0} ) $ | ||
+ | and $ V ( p _ {1} ) $ | ||
+ | are two parametric neighbourhoods such that $ V ( p _ {0} ) \cap V ( p _ {1} ) \neq \emptyset $, | ||
+ | and $ t _ {p _ {0} } $ | ||
+ | and $ t _ {p _ {1} } $ | ||
+ | are the two corresponding local uniformizing parameters, then $ t _ {p _ {1} } = \phi _ {p _ {1} } [ \phi _ {p _ {0} } ^ {-} 1 ( t _ {p _ {0} } )] $ | ||
+ | is a univalent holomorphic function on some subdomain of $ D ( p _ {0} ) $ | ||
+ | realizing a biholomorphic mapping of this subdomain into $ D ( p _ {1} ) $. | ||
− | If | + | If $ R = R _ {F} $ |
+ | is the Riemann surface of an analytic function $ w = F ( z) $ | ||
+ | and $ p _ {0} $ | ||
+ | is a regular element of $ F ( z) $ | ||
+ | with projection $ z _ {0} \neq \infty $, | ||
+ | then $ t _ {p _ {0} } = z - z _ {0} $; | ||
+ | $ t _ {p _ {0} } = 1 / z $ | ||
+ | for $ z _ {0} = \infty $. | ||
+ | If $ p _ {0} $ | ||
+ | is a singular, or algebraic, element of $ F ( z) $, | ||
+ | corresponding to the [[Branch point|branch point]] $ z _ {0} $ | ||
+ | of order $ k - 1 > 0 $, | ||
+ | then $ t _ {p _ {0} } = ( z - z _ {0} ) ^ {1/k} $ | ||
+ | for $ z _ {0} \neq \infty $ | ||
+ | and $ t _ {p _ {0} } = 1 / z ^ {1/k} $ | ||
+ | for $ z _ {0} = \infty $. | ||
+ | In a parametric neighbourhood of an element $ p _ {0} $ | ||
+ | the local uniformizing parameter $ t $ | ||
+ | actually realizes a local [[Uniformization|uniformization]], generally speaking, of the many-valued relation $ w = F ( z) $, | ||
+ | according to the formulas (for example, for $ z _ {0} \neq \infty $): | ||
− | + | $$ | |
+ | z = z _ {0} + t ^ {k} ,\ \ | ||
+ | w = F ( z _ {0} + t ^ {k} ) = w ( t) ,\ \ | ||
+ | k \geq 1 . | ||
+ | $$ | ||
− | In the case when | + | In the case when $ R $ |
+ | is a Riemann surface with boundary, for points $ p _ {0} $ | ||
+ | belonging to the boundary of $ R $ | ||
+ | the local uniformizing parameter $ t _ {p _ {0} } = \phi _ {p _ {0} } ( p) $ | ||
+ | maps the parametric neighbourhood $ V ( p _ {0} ) $ | ||
+ | onto the half-disc | ||
− | + | $$ | |
+ | D ( p _ {0} ) = \ | ||
+ | \{ {t \in \mathbf C } : {| t | < r ( p _ {0} ) , \mathop{\rm Im} t \geq 0 } \} | ||
+ | . | ||
+ | $$ | ||
− | If | + | If $ R $ |
+ | is a a [[Riemannian domain|Riemannian domain]] over a complex space $ \mathbf C ^ {n} $, | ||
+ | $ n > 1 $, | ||
+ | then the local uniformizing parameter | ||
− | + | $$ | |
+ | t _ {p _ {0} } = \ | ||
+ | \phi _ {p _ {0} } ( p) = \ | ||
+ | ( t _ {1} \dots t _ {n} ) _ {p _ {0} } = \ | ||
+ | ( \phi _ {1} ( p) \dots \phi _ {n} ( p) ) _ {p _ {0} } | ||
+ | $$ | ||
− | realizes a homeomorphic mapping of the parametric neighbourhood | + | realizes a homeomorphic mapping of the parametric neighbourhood $ V ( p _ {0} ) $ |
+ | onto the polydisc | ||
− | + | $$ | |
+ | D ( p _ {0} ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \{ t = ( t _ {1} \dots t _ {n} ) \in \mathbf C ^ {n} : | t _ {1} | < r _ {1} ( p _ {0} ) \dots | ||
+ | | t _ {n} | < r _ {n} ( p _ {0} ) \} . | ||
+ | $$ | ||
− | If | + | If $ V ( p _ {0} ) \cap V ( p _ {1} ) $ |
+ | is not empty, then the mapping $ t _ {p _ {1} } = \phi _ {p _ {1} } [ \phi _ {p _ {0} } ^ {-} 1 ( t _ {p _ {0} } ) ] $ | ||
+ | biholomorphically maps a certain subdomain of $ D ( p _ {0} ) $ | ||
+ | into $ D ( p _ {1} ) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''2''' , Chelsea (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''1–2''' , Moscow (1976) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''2''' , Chelsea (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''1–2''' , Moscow (1976) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H.M. Farkas, I. Kra, "Riemann surfaces" , Springer (1980)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H.M. Farkas, I. Kra, "Riemann surfaces" , Springer (1980)</TD></TR></table> |
Revision as of 22:17, 5 June 2020
local uniformizer, local parameter
A complex variable $ t $ defined as a continuous function $ t _ {p _ {0} } = \phi _ {p _ {0} } ( p) $ of a point $ p $ on a Riemann surface $ R $, defined everywhere in some neighbourhood $ V ( p _ {0} ) $ of a point $ p _ {0} \in R $ and realizing a homeomorphic mapping of $ V ( p _ {0} ) $ onto the disc $ D ( p _ {0} ) = \{ {t \in \mathbf C } : {| t | < r ( p _ {0} ) } \} $, where $ \phi _ {p _ {0} } ( p _ {0} ) = 0 $. Here $ V ( p _ {0} ) $ is said to be a distinguished or parametric neighbourhood, $ \phi _ {p _ {0} } : V ( p _ {0} ) \rightarrow D ( p _ {0} ) $ a distinguished or parametric mapping, and $ D ( p _ {0} ) $ a distinguished or parametric disc. Under a parametric mapping any point function $ g ( p) $, defined in a parametric neighbourhood $ V ( p _ {0} ) $, goes into a function of the local uniformizing parameter $ t $, that is, $ g ( p) = g [ \phi _ {p _ {0} } ^ {-} 1 ( t) ] = G ( t) $. If $ V ( p _ {0} ) $ and $ V ( p _ {1} ) $ are two parametric neighbourhoods such that $ V ( p _ {0} ) \cap V ( p _ {1} ) \neq \emptyset $, and $ t _ {p _ {0} } $ and $ t _ {p _ {1} } $ are the two corresponding local uniformizing parameters, then $ t _ {p _ {1} } = \phi _ {p _ {1} } [ \phi _ {p _ {0} } ^ {-} 1 ( t _ {p _ {0} } )] $ is a univalent holomorphic function on some subdomain of $ D ( p _ {0} ) $ realizing a biholomorphic mapping of this subdomain into $ D ( p _ {1} ) $.
If $ R = R _ {F} $ is the Riemann surface of an analytic function $ w = F ( z) $ and $ p _ {0} $ is a regular element of $ F ( z) $ with projection $ z _ {0} \neq \infty $, then $ t _ {p _ {0} } = z - z _ {0} $; $ t _ {p _ {0} } = 1 / z $ for $ z _ {0} = \infty $. If $ p _ {0} $ is a singular, or algebraic, element of $ F ( z) $, corresponding to the branch point $ z _ {0} $ of order $ k - 1 > 0 $, then $ t _ {p _ {0} } = ( z - z _ {0} ) ^ {1/k} $ for $ z _ {0} \neq \infty $ and $ t _ {p _ {0} } = 1 / z ^ {1/k} $ for $ z _ {0} = \infty $. In a parametric neighbourhood of an element $ p _ {0} $ the local uniformizing parameter $ t $ actually realizes a local uniformization, generally speaking, of the many-valued relation $ w = F ( z) $, according to the formulas (for example, for $ z _ {0} \neq \infty $):
$$ z = z _ {0} + t ^ {k} ,\ \ w = F ( z _ {0} + t ^ {k} ) = w ( t) ,\ \ k \geq 1 . $$
In the case when $ R $ is a Riemann surface with boundary, for points $ p _ {0} $ belonging to the boundary of $ R $ the local uniformizing parameter $ t _ {p _ {0} } = \phi _ {p _ {0} } ( p) $ maps the parametric neighbourhood $ V ( p _ {0} ) $ onto the half-disc
$$ D ( p _ {0} ) = \ \{ {t \in \mathbf C } : {| t | < r ( p _ {0} ) , \mathop{\rm Im} t \geq 0 } \} . $$
If $ R $ is a a Riemannian domain over a complex space $ \mathbf C ^ {n} $, $ n > 1 $, then the local uniformizing parameter
$$ t _ {p _ {0} } = \ \phi _ {p _ {0} } ( p) = \ ( t _ {1} \dots t _ {n} ) _ {p _ {0} } = \ ( \phi _ {1} ( p) \dots \phi _ {n} ( p) ) _ {p _ {0} } $$
realizes a homeomorphic mapping of the parametric neighbourhood $ V ( p _ {0} ) $ onto the polydisc
$$ D ( p _ {0} ) = $$
$$ = \ \{ t = ( t _ {1} \dots t _ {n} ) \in \mathbf C ^ {n} : | t _ {1} | < r _ {1} ( p _ {0} ) \dots | t _ {n} | < r _ {n} ( p _ {0} ) \} . $$
If $ V ( p _ {0} ) \cap V ( p _ {1} ) $ is not empty, then the mapping $ t _ {p _ {1} } = \phi _ {p _ {1} } [ \phi _ {p _ {0} } ^ {-} 1 ( t _ {p _ {0} } ) ] $ biholomorphically maps a certain subdomain of $ D ( p _ {0} ) $ into $ D ( p _ {1} ) $.
References
[1] | A.I. Markushevich, "Theory of functions of a complex variable" , 2 , Chelsea (1977) (Translated from Russian) |
[2] | G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10 |
[3] | B.V. Shabat, "Introduction of complex analysis" , 1–2 , Moscow (1976) (In Russian) |
Comments
References
[a1] | H.M. Farkas, I. Kra, "Riemann surfaces" , Springer (1980) |
Local uniformizing parameter. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Local_uniformizing_parameter&oldid=11803