|
|
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517701.png" /> be a finite-dimensional smooth manifold. Tangent spaces and such provide the global analogues of differential calculus. There is also an "integral calculus on manifolds" . Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517702.png" /> be the standard <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517703.png" />-cube. A singular cube in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517704.png" /> is a smooth mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517705.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517706.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517707.png" />-form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517708.png" /> (cf. [[Differential form|Differential form]]). Then the integral of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517709.png" /> over a singular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177010.png" />-cube <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177011.png" /> is defined as
| + | <!-- |
| + | i0517701.png |
| + | $#A+1 = 81 n = 0 |
| + | $#C+1 = 81 : ~/encyclopedia/old_files/data/I051/I.0501770 Integration on manifolds |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177012.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177013.png" /> is the unique smooth function such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177014.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177015.png" /> and where on the right-hand side the ordinary Lebesgue integral is taken. A singular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177017.png" />-chain is a formal finite sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177018.png" /> of singular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177019.png" />-cubes with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177020.png" />. One defines
| + | Let $ M $ |
| + | be a finite-dimensional smooth manifold. Tangent spaces and such provide the global analogues of differential calculus. There is also an "integral calculus on manifolds" . Let $ \Delta _ {n} = [ 0, 1] ^ {n} \subset \mathbf R ^ {n} $ |
| + | be the standard $ n $- |
| + | cube. A singular cube in $ M $ |
| + | is a smooth mapping $ s: \Delta _ {k} \rightarrow M $. |
| + | Let $ \omega $ |
| + | be a $ k $- |
| + | form on $ M $( |
| + | cf. [[Differential form|Differential form]]). Then the integral of $ \omega $ |
| + | over a singular $ k $- |
| + | cube $ s $ |
| + | is defined as |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177021.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
| + | $$ \tag{a1 } |
| + | \int\limits _ { s } \omega = \ |
| + | \int\limits _ {\Delta _ {k} } f , |
| + | $$ |
| | | |
− | Now let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177022.png" /> be oriented and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177024.png" /> be two singular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177025.png" />-chains such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177026.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177027.png" /> and such that all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177028.png" /> are orientation preserving. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177029.png" />. In particular, if the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177030.png" /> fit together to define a piecewise-smooth <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177031.png" />-dimensional submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177032.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177033.png" />, then the integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177034.png" /> is well-defined.
| + | where $ f $ |
| + | is the unique smooth function such that $ s ^ {*} \omega = f dx _ {1} \wedge \dots \wedge dx _ {k} $ |
| + | on $ \Delta _ {k} $ |
| + | and where on the right-hand side the ordinary Lebesgue integral is taken. A singular $ k $- |
| + | chain is a formal finite sum $ c = \sum n _ {i} s _ {i} $ |
| + | of singular $ k $- |
| + | cubes with coefficients in $ \mathbf Z $. |
| + | One defines |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177035.png" /> denote the exterior derivative on exterior forms (cf. [[Exterior form|Exterior form]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177036.png" /> the (obvious) boundary operator on oriented (singular) chains. Then one has Stokes' theorem
| + | $$ \tag{a2 } |
| + | \int\limits _ { c } \omega = \ |
| + | \sum _ { i } n _ {i} \int\limits _ {s _ {i} } \omega . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177037.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
| + | Now let $ M $ |
| + | be oriented and let $ c = \sum n _ {i} s _ {i} $ |
| + | and $ c ^ \prime = \sum n _ {i} s _ {i} ^ \prime $ |
| + | be two singular $ k $- |
| + | chains such that $ s _ {i} ( \Delta _ {k} ) = s _ {i} ^ \prime ( \Delta _ {k} ) $ |
| + | for all $ i $ |
| + | and such that all the $ s _ {i} , s _ {i} ^ \prime $ |
| + | are orientation preserving. Then $ \int _ {c} \omega = \int _ {c ^ \prime } \omega $. |
| + | In particular, if the $ s _ {i} $ |
| + | fit together to define a piecewise-smooth $ k $- |
| + | dimensional submanifold $ N $ |
| + | of $ M $, |
| + | then the integral $ \int _ {N} \omega $ |
| + | is well-defined. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177038.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177039.png" />-form and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177040.png" /> is a singular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177041.png" />-chain. This is the analogue of the fundamental theorem of calculus.
| + | Let $ d $ |
| + | denote the exterior derivative on exterior forms (cf. [[Exterior form|Exterior form]]) and $ \partial $ |
| + | the (obvious) boundary operator on oriented (singular) chains. Then one has Stokes' theorem |
| | | |
− | A particular consequence is Green's theorem: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177042.png" /> be a compact <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177043.png" />-dimensional manifold with boundary and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177044.png" /> be differentiable. Then
| + | $$ \tag{a3 } |
| + | \int\limits _ { c } d \omega = \ |
| + | \int\limits _ {\partial c } \omega , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177045.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
| + | where $ \omega $ |
| + | is a $ ( k - 1) $- |
| + | form and $ c $ |
| + | is a singular $ k $- |
| + | chain. This is the analogue of the fundamental theorem of calculus. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177046.png" /> now be an oriented <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177047.png" />-dimensional Riemannian manifold, i.e. for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177048.png" /> an [[Orientation|orientation]] has been given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177049.png" />. The volume form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177050.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177051.png" /> is now defined by requiring that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177052.png" /> for one (and hence each) orthonormal basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177053.png" /> in the given orientation class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177054.png" />. Another consequence of the general Stokes' theorem (a3) is the divergence theorem: | + | A particular consequence is Green's theorem: Let $ M \subset \mathbf R ^ {2} $ |
| + | be a compact $ 2 $- |
| + | dimensional manifold with boundary and let $ f , g: M \rightarrow \mathbf R $ |
| + | be differentiable. Then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177055.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a5)</td></tr></table>
| + | $$ \tag{a4 } |
| + | \int\limits _ {\partial M } ( f dx + g dy) = \ |
| + | {\int\limits \int\limits } _ { M } |
| + | \left ( |
| | | |
− | Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177056.png" /> is a vector field on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177057.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177058.png" /> is a three-dimensional oriented manifold in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177060.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177062.png" /> is an outward normal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177063.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177064.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177065.png" /> are, respectively, the volume and area elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177066.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177067.png" />. The [[Inner product|inner product]] is induced from the standard one in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177068.png" />.
| + | \frac{\partial g }{\partial x } |
| + | - |
| | | |
− | Finally there is the classical Stokes' formula: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177069.png" /> be an oriented two-dimensional submanifold with boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177070.png" />. Give <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177071.png" /> an orientation such that together with the outward normal it gives back the orientation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177072.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177073.png" /> parametrize <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177074.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177075.png" /> be the vector field on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177076.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177077.png" /> everywhere. One then has the formula
| + | \frac{\partial f }{\partial y } |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177078.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a6)</td></tr></table>
| + | \right ) dx dy . |
| + | $$ |
| | | |
− | where the curl of a vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177079.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177080.png" /> is defined by:
| + | Let $ M $ |
| + | now be an oriented $ n $- |
| + | dimensional Riemannian manifold, i.e. for each $ x \in M $ |
| + | an [[Orientation|orientation]] has been given on $ T _ {x} M $. |
| + | The volume form $ \omega _ {M} $ |
| + | on $ M $ |
| + | is now defined by requiring that $ \omega _ {M} ( x) ( v _ {1} \dots v _ {n} ) = 1 $ |
| + | for one (and hence each) orthonormal basis of $ T _ {x} M $ |
| + | in the given orientation class of $ T _ {x} M $. |
| + | Another consequence of the general Stokes' theorem (a3) is the divergence theorem: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177081.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a7)</td></tr></table>
| + | $$ \tag{a5 } |
| + | \int\limits _ { M } \mathop{\rm div} \psi dV = \ |
| + | \int\limits _ {\partial M } \langle \psi , n \rangle dA . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177082.png" /></td> </tr></table>
| + | Here $ \psi $ |
| + | is a vector field on $ \mathbf R ^ {3} $, |
| + | $ M $ |
| + | is a three-dimensional oriented manifold in $ \mathbf R ^ {3} $, |
| + | $ \mathop{\rm div} \psi = {\partial \psi _ {i} } / {\partial x _ {i} } $ |
| + | if $ \psi = \sum \psi _ {i} \partial / {\partial x _ {i} } $, |
| + | $ n $ |
| + | is an outward normal to $ \partial M $, |
| + | and $ dM $ |
| + | and $ dA $ |
| + | are, respectively, the volume and area elements of $ M $ |
| + | and $ \partial M $. |
| + | The [[Inner product|inner product]] is induced from the standard one in $ \mathbf R ^ {3} $. |
| + | |
| + | Finally there is the classical Stokes' formula: Let $ M \subset \mathbf R ^ {3} $ |
| + | be an oriented two-dimensional submanifold with boundary $ \partial M $. |
| + | Give $ \partial M $ |
| + | an orientation such that together with the outward normal it gives back the orientation of $ M $. |
| + | Let $ s $ |
| + | parametrize $ \partial M $ |
| + | and let $ \phi $ |
| + | be the vector field on $ \partial M $ |
| + | such that $ ds ( \phi ) = 1 $ |
| + | everywhere. One then has the formula |
| + | |
| + | $$ \tag{a6 } |
| + | \int\limits _ { M } \langle \mathop{\rm curl} \psi , n \rangle dA = \ |
| + | \int\limits _ {\partial M } \langle \psi , \phi \rangle ds , |
| + | $$ |
| + | |
| + | where the curl of a vector field $ \psi $ |
| + | on $ \mathbf R ^ {3} $ |
| + | is defined by: |
| + | |
| + | $$ \tag{a7 } |
| + | \mathop{\rm curl} \psi = \ |
| + | \left ( |
| + | |
| + | \frac{\partial \psi _ {3} }{\partial x _ {2} } |
| + | - |
| + | |
| + | \frac{\partial \psi _ {2} }{\partial x _ {3} } |
| + | |
| + | \right ) |
| + | { |
| + | \frac \partial {\partial x _ {1} } |
| + | } + |
| + | $$ |
| + | |
| + | $$ |
| + | + |
| + | \left ( |
| + | \frac{\partial \psi _ {1} }{\partial x _ {3} } |
| + | - |
| + | \frac{\partial \psi _ {3} }{\partial x _ {1} } |
| + | \right ) { |
| + | \frac \partial {\partial x _ {2} } |
| + | } + \left ( |
| + | |
| + | \frac{\partial \psi _ {2} }{\partial x _ {1} } |
| + | - |
| + | |
| + | \frac{\partial \psi _ {1} }{\partial x _ {2} } |
| + | |
| + | \right ) { |
| + | \frac \partial {\partial x _ {3} } |
| + | } . |
| + | $$ |
| | | |
| All these theorems have higher-dimensional analogues. | | All these theorems have higher-dimensional analogues. |
Let $ M $
be a finite-dimensional smooth manifold. Tangent spaces and such provide the global analogues of differential calculus. There is also an "integral calculus on manifolds" . Let $ \Delta _ {n} = [ 0, 1] ^ {n} \subset \mathbf R ^ {n} $
be the standard $ n $-
cube. A singular cube in $ M $
is a smooth mapping $ s: \Delta _ {k} \rightarrow M $.
Let $ \omega $
be a $ k $-
form on $ M $(
cf. Differential form). Then the integral of $ \omega $
over a singular $ k $-
cube $ s $
is defined as
$$ \tag{a1 }
\int\limits _ { s } \omega = \
\int\limits _ {\Delta _ {k} } f ,
$$
where $ f $
is the unique smooth function such that $ s ^ {*} \omega = f dx _ {1} \wedge \dots \wedge dx _ {k} $
on $ \Delta _ {k} $
and where on the right-hand side the ordinary Lebesgue integral is taken. A singular $ k $-
chain is a formal finite sum $ c = \sum n _ {i} s _ {i} $
of singular $ k $-
cubes with coefficients in $ \mathbf Z $.
One defines
$$ \tag{a2 }
\int\limits _ { c } \omega = \
\sum _ { i } n _ {i} \int\limits _ {s _ {i} } \omega .
$$
Now let $ M $
be oriented and let $ c = \sum n _ {i} s _ {i} $
and $ c ^ \prime = \sum n _ {i} s _ {i} ^ \prime $
be two singular $ k $-
chains such that $ s _ {i} ( \Delta _ {k} ) = s _ {i} ^ \prime ( \Delta _ {k} ) $
for all $ i $
and such that all the $ s _ {i} , s _ {i} ^ \prime $
are orientation preserving. Then $ \int _ {c} \omega = \int _ {c ^ \prime } \omega $.
In particular, if the $ s _ {i} $
fit together to define a piecewise-smooth $ k $-
dimensional submanifold $ N $
of $ M $,
then the integral $ \int _ {N} \omega $
is well-defined.
Let $ d $
denote the exterior derivative on exterior forms (cf. Exterior form) and $ \partial $
the (obvious) boundary operator on oriented (singular) chains. Then one has Stokes' theorem
$$ \tag{a3 }
\int\limits _ { c } d \omega = \
\int\limits _ {\partial c } \omega ,
$$
where $ \omega $
is a $ ( k - 1) $-
form and $ c $
is a singular $ k $-
chain. This is the analogue of the fundamental theorem of calculus.
A particular consequence is Green's theorem: Let $ M \subset \mathbf R ^ {2} $
be a compact $ 2 $-
dimensional manifold with boundary and let $ f , g: M \rightarrow \mathbf R $
be differentiable. Then
$$ \tag{a4 }
\int\limits _ {\partial M } ( f dx + g dy) = \
{\int\limits \int\limits } _ { M }
\left (
\frac{\partial g }{\partial x }
-
\frac{\partial f }{\partial y }
\right ) dx dy .
$$
Let $ M $
now be an oriented $ n $-
dimensional Riemannian manifold, i.e. for each $ x \in M $
an orientation has been given on $ T _ {x} M $.
The volume form $ \omega _ {M} $
on $ M $
is now defined by requiring that $ \omega _ {M} ( x) ( v _ {1} \dots v _ {n} ) = 1 $
for one (and hence each) orthonormal basis of $ T _ {x} M $
in the given orientation class of $ T _ {x} M $.
Another consequence of the general Stokes' theorem (a3) is the divergence theorem:
$$ \tag{a5 }
\int\limits _ { M } \mathop{\rm div} \psi dV = \
\int\limits _ {\partial M } \langle \psi , n \rangle dA .
$$
Here $ \psi $
is a vector field on $ \mathbf R ^ {3} $,
$ M $
is a three-dimensional oriented manifold in $ \mathbf R ^ {3} $,
$ \mathop{\rm div} \psi = {\partial \psi _ {i} } / {\partial x _ {i} } $
if $ \psi = \sum \psi _ {i} \partial / {\partial x _ {i} } $,
$ n $
is an outward normal to $ \partial M $,
and $ dM $
and $ dA $
are, respectively, the volume and area elements of $ M $
and $ \partial M $.
The inner product is induced from the standard one in $ \mathbf R ^ {3} $.
Finally there is the classical Stokes' formula: Let $ M \subset \mathbf R ^ {3} $
be an oriented two-dimensional submanifold with boundary $ \partial M $.
Give $ \partial M $
an orientation such that together with the outward normal it gives back the orientation of $ M $.
Let $ s $
parametrize $ \partial M $
and let $ \phi $
be the vector field on $ \partial M $
such that $ ds ( \phi ) = 1 $
everywhere. One then has the formula
$$ \tag{a6 }
\int\limits _ { M } \langle \mathop{\rm curl} \psi , n \rangle dA = \
\int\limits _ {\partial M } \langle \psi , \phi \rangle ds ,
$$
where the curl of a vector field $ \psi $
on $ \mathbf R ^ {3} $
is defined by:
$$ \tag{a7 }
\mathop{\rm curl} \psi = \
\left (
\frac{\partial \psi _ {3} }{\partial x _ {2} }
-
\frac{\partial \psi _ {2} }{\partial x _ {3} }
\right )
{
\frac \partial {\partial x _ {1} }
} +
$$
$$
+
\left (
\frac{\partial \psi _ {1} }{\partial x _ {3} }
-
\frac{\partial \psi _ {3} }{\partial x _ {1} }
\right ) {
\frac \partial {\partial x _ {2} }
} + \left (
\frac{\partial \psi _ {2} }{\partial x _ {1} }
-
\frac{\partial \psi _ {1} }{\partial x _ {2} }
\right ) {
\frac \partial {\partial x _ {3} }
} .
$$
All these theorems have higher-dimensional analogues.
References
[a1] | M. Spivak, "Calculus on manifolds" , Benjamin (1965) |
[a2] | M. Hazewinkel, "A tutorial introduction to differentiable manifolds and calculus on manifolds" W. Schiehlen (ed.) W. Wedig (ed.) , Analysis and estimation of stochastic mechanical systems , Springer (Wien) (1988) pp. 316–340 |