Namespaces
Variants
Actions

Difference between revisions of "Integration on manifolds"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517701.png" /> be a finite-dimensional smooth manifold. Tangent spaces and such provide the global analogues of differential calculus. There is also an  "integral calculus on manifolds" . Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517702.png" /> be the standard <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517703.png" />-cube. A singular cube in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517704.png" /> is a smooth mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517705.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517706.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517707.png" />-form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517708.png" /> (cf. [[Differential form|Differential form]]). Then the integral of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i0517709.png" /> over a singular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177010.png" />-cube <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177011.png" /> is defined as
+
<!--
 +
i0517701.png
 +
$#A+1 = 81 n = 0
 +
$#C+1 = 81 : ~/encyclopedia/old_files/data/I051/I.0501770 Integration on manifolds
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177012.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177013.png" /> is the unique smooth function such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177014.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177015.png" /> and where on the right-hand side the ordinary Lebesgue integral is taken. A singular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177017.png" />-chain is a formal finite sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177018.png" /> of singular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177019.png" />-cubes with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177020.png" />. One defines
+
Let  $  M $
 +
be a finite-dimensional smooth manifold. Tangent spaces and such provide the global analogues of differential calculus. There is also an  "integral calculus on manifolds" . Let  $  \Delta _ {n} = [ 0, 1]  ^ {n} \subset  \mathbf R  ^ {n} $
 +
be the standard  $  n $-
 +
cube. A singular cube in  $  M $
 +
is a smooth mapping  $  s: \Delta _ {k} \rightarrow M $.  
 +
Let  $  \omega $
 +
be a  $  k $-
 +
form on  $  M $(
 +
cf. [[Differential form|Differential form]]). Then the integral of $  \omega $
 +
over a singular $  k $-
 +
cube  $  s $
 +
is defined as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177021.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
$$ \tag{a1 }
 +
\int\limits _ { s } \omega  = \
 +
\int\limits _ {\Delta _ {k} } f ,
 +
$$
  
Now let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177022.png" /> be oriented and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177024.png" /> be two singular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177025.png" />-chains such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177026.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177027.png" /> and such that all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177028.png" /> are orientation preserving. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177029.png" />. In particular, if the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177030.png" /> fit together to define a piecewise-smooth <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177031.png" />-dimensional submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177032.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177033.png" />, then the integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177034.png" /> is well-defined.
+
where  $  f $
 +
is the unique smooth function such that $  s  ^ {*} \omega = f  dx _ {1} \wedge \dots \wedge dx _ {k} $
 +
on  $  \Delta _ {k} $
 +
and where on the right-hand side the ordinary Lebesgue integral is taken. A singular  $  k $-
 +
chain is a formal finite sum  $  c = \sum n _ {i} s _ {i} $
 +
of singular  $  k $-
 +
cubes with coefficients in  $  \mathbf Z $.  
 +
One defines
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177035.png" /> denote the exterior derivative on exterior forms (cf. [[Exterior form|Exterior form]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177036.png" /> the (obvious) boundary operator on oriented (singular) chains. Then one has Stokes' theorem
+
$$ \tag{a2 }
 +
\int\limits _ { c } \omega  = \
 +
\sum _ { i } n _ {i} \int\limits _ {s _ {i} } \omega .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177037.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
Now let  $  M $
 +
be oriented and let  $  c = \sum n _ {i} s _ {i} $
 +
and  $  c  ^  \prime  = \sum n _ {i} s _ {i}  ^  \prime  $
 +
be two singular  $  k $-
 +
chains such that  $  s _ {i} ( \Delta _ {k} ) = s _ {i}  ^  \prime  ( \Delta _ {k} ) $
 +
for all  $  i $
 +
and such that all the  $  s _ {i} , s _ {i}  ^  \prime  $
 +
are orientation preserving. Then  $  \int _ {c} \omega = \int _ {c  ^  \prime  } \omega $.  
 +
In particular, if the  $  s _ {i} $
 +
fit together to define a piecewise-smooth  $  k $-
 +
dimensional submanifold  $  N $
 +
of  $  M $,
 +
then the integral  $  \int _ {N} \omega $
 +
is well-defined.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177038.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177039.png" />-form and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177040.png" /> is a singular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177041.png" />-chain. This is the analogue of the fundamental theorem of calculus.
+
Let  $  d $
 +
denote the exterior derivative on exterior forms (cf. [[Exterior form|Exterior form]]) and $  \partial  $
 +
the (obvious) boundary operator on oriented (singular) chains. Then one has Stokes' theorem
  
A particular consequence is Green's theorem: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177042.png" /> be a compact <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177043.png" />-dimensional manifold with boundary and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177044.png" /> be differentiable. Then
+
$$ \tag{a3 }
 +
\int\limits _ { c } d \omega  = \
 +
\int\limits _ {\partial  c } \omega ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177045.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
+
where  $  \omega $
 +
is a  $  ( k - 1) $-
 +
form and  $  c $
 +
is a singular  $  k $-
 +
chain. This is the analogue of the fundamental theorem of calculus.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177046.png" /> now be an oriented <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177047.png" />-dimensional Riemannian manifold, i.e. for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177048.png" /> an [[Orientation|orientation]] has been given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177049.png" />. The volume form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177050.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177051.png" /> is now defined by requiring that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177052.png" /> for one (and hence each) orthonormal basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177053.png" /> in the given orientation class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177054.png" />. Another consequence of the general Stokes' theorem (a3) is the divergence theorem:
+
A particular consequence is Green's theorem: Let $  M \subset  \mathbf R  ^ {2} $
 +
be a compact  $  2 $-
 +
dimensional manifold with boundary and let  $  f , g: M \rightarrow \mathbf R $
 +
be differentiable. Then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177055.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a5)</td></tr></table>
+
$$ \tag{a4 }
 +
\int\limits _ {\partial  M } ( f  dx + g  dy)  = \
 +
{\int\limits \int\limits } _ { M }
 +
\left (
  
Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177056.png" /> is a vector field on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177057.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177058.png" /> is a three-dimensional oriented manifold in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177060.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177062.png" /> is an outward normal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177063.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177064.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177065.png" /> are, respectively, the volume and area elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177066.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177067.png" />. The [[Inner product|inner product]] is induced from the standard one in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177068.png" />.
+
\frac{\partial  g }{\partial  x }
 +
-
  
Finally there is the classical Stokes' formula: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177069.png" /> be an oriented two-dimensional submanifold with boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177070.png" />. Give <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177071.png" /> an orientation such that together with the outward normal it gives back the orientation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177072.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177073.png" /> parametrize <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177074.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177075.png" /> be the vector field on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177076.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177077.png" /> everywhere. One then has the formula
+
\frac{\partial  f }{\partial  y }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177078.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a6)</td></tr></table>
+
\right ) dx  dy .
 +
$$
  
where the curl of a vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177079.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177080.png" /> is defined by:
+
Let  $  M $
 +
now be an oriented  $  n $-
 +
dimensional Riemannian manifold, i.e. for each  $  x \in M $
 +
an [[Orientation|orientation]] has been given on  $  T _ {x} M $.  
 +
The volume form  $  \omega _ {M} $
 +
on $  M $
 +
is now defined by requiring that  $  \omega _ {M} ( x) ( v _ {1} \dots v _ {n} ) = 1 $
 +
for one (and hence each) orthonormal basis of  $  T _ {x} M $
 +
in the given orientation class of  $  T _ {x} M $.  
 +
Another consequence of the general Stokes' theorem (a3) is the divergence theorem:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177081.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a7)</td></tr></table>
+
$$ \tag{a5 }
 +
\int\limits _ { M }  \mathop{\rm div}  \psi  dV  = \
 +
\int\limits _ {\partial  M } \langle  \psi , n \rangle  dA .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177082.png" /></td> </tr></table>
+
Here  $  \psi $
 +
is a vector field on  $  \mathbf R  ^ {3} $,
 +
$  M $
 +
is a three-dimensional oriented manifold in  $  \mathbf R  ^ {3} $,
 +
$  \mathop{\rm div}  \psi = {\partial  \psi _ {i} } / {\partial  x _ {i} } $
 +
if  $  \psi = \sum \psi _ {i} \partial  / {\partial  x _ {i} } $,
 +
$  n $
 +
is an outward normal to  $  \partial  M $,
 +
and  $  dM $
 +
and  $  dA $
 +
are, respectively, the volume and area elements of  $  M $
 +
and  $  \partial  M $.
 +
The [[Inner product|inner product]] is induced from the standard one in  $  \mathbf R  ^ {3} $.
 +
 
 +
Finally there is the classical Stokes' formula: Let  $  M \subset  \mathbf R  ^ {3} $
 +
be an oriented two-dimensional submanifold with boundary  $  \partial  M $.
 +
Give  $  \partial  M $
 +
an orientation such that together with the outward normal it gives back the orientation of  $  M $.
 +
Let  $  s $
 +
parametrize  $  \partial  M $
 +
and let  $  \phi $
 +
be the vector field on  $  \partial  M $
 +
such that  $  ds ( \phi ) = 1 $
 +
everywhere. One then has the formula
 +
 
 +
$$ \tag{a6 }
 +
\int\limits _ { M } \langle  \mathop{\rm curl}  \psi , n \rangle  dA  = \
 +
\int\limits _ {\partial  M } \langle  \psi , \phi \rangle ds ,
 +
$$
 +
 
 +
where the curl of a vector field  $  \psi $
 +
on  $  \mathbf R  ^ {3} $
 +
is defined by:
 +
 
 +
$$ \tag{a7 }
 +
\mathop{\rm curl}  \psi  = \
 +
\left (
 +
 
 +
\frac{\partial  \psi _ {3} }{\partial  x _ {2} }
 +
-
 +
 
 +
\frac{\partial  \psi _ {2} }{\partial  x _ {3} }
 +
 
 +
\right )
 +
{
 +
\frac \partial {\partial  x _ {1} }
 +
} +
 +
$$
 +
 
 +
$$
 +
+
 +
\left (
 +
\frac{\partial  \psi _ {1} }{\partial  x _ {3}  }
 +
-
 +
\frac{\partial  \psi _ {3} }{\partial  x _ {1}  }
 +
\right ) {
 +
\frac \partial {\partial  x _ {2} }
 +
} + \left (
 +
 
 +
\frac{\partial  \psi _ {2} }{\partial  x _ {1} }
 +
-
 +
 
 +
\frac{\partial  \psi _ {1} }{\partial  x _ {2} }
 +
 
 +
\right ) {
 +
\frac \partial {\partial  x _ {3} }
 +
} .
 +
$$
  
 
All these theorems have higher-dimensional analogues.
 
All these theorems have higher-dimensional analogues.

Latest revision as of 22:13, 5 June 2020


Let $ M $ be a finite-dimensional smooth manifold. Tangent spaces and such provide the global analogues of differential calculus. There is also an "integral calculus on manifolds" . Let $ \Delta _ {n} = [ 0, 1] ^ {n} \subset \mathbf R ^ {n} $ be the standard $ n $- cube. A singular cube in $ M $ is a smooth mapping $ s: \Delta _ {k} \rightarrow M $. Let $ \omega $ be a $ k $- form on $ M $( cf. Differential form). Then the integral of $ \omega $ over a singular $ k $- cube $ s $ is defined as

$$ \tag{a1 } \int\limits _ { s } \omega = \ \int\limits _ {\Delta _ {k} } f , $$

where $ f $ is the unique smooth function such that $ s ^ {*} \omega = f dx _ {1} \wedge \dots \wedge dx _ {k} $ on $ \Delta _ {k} $ and where on the right-hand side the ordinary Lebesgue integral is taken. A singular $ k $- chain is a formal finite sum $ c = \sum n _ {i} s _ {i} $ of singular $ k $- cubes with coefficients in $ \mathbf Z $. One defines

$$ \tag{a2 } \int\limits _ { c } \omega = \ \sum _ { i } n _ {i} \int\limits _ {s _ {i} } \omega . $$

Now let $ M $ be oriented and let $ c = \sum n _ {i} s _ {i} $ and $ c ^ \prime = \sum n _ {i} s _ {i} ^ \prime $ be two singular $ k $- chains such that $ s _ {i} ( \Delta _ {k} ) = s _ {i} ^ \prime ( \Delta _ {k} ) $ for all $ i $ and such that all the $ s _ {i} , s _ {i} ^ \prime $ are orientation preserving. Then $ \int _ {c} \omega = \int _ {c ^ \prime } \omega $. In particular, if the $ s _ {i} $ fit together to define a piecewise-smooth $ k $- dimensional submanifold $ N $ of $ M $, then the integral $ \int _ {N} \omega $ is well-defined.

Let $ d $ denote the exterior derivative on exterior forms (cf. Exterior form) and $ \partial $ the (obvious) boundary operator on oriented (singular) chains. Then one has Stokes' theorem

$$ \tag{a3 } \int\limits _ { c } d \omega = \ \int\limits _ {\partial c } \omega , $$

where $ \omega $ is a $ ( k - 1) $- form and $ c $ is a singular $ k $- chain. This is the analogue of the fundamental theorem of calculus.

A particular consequence is Green's theorem: Let $ M \subset \mathbf R ^ {2} $ be a compact $ 2 $- dimensional manifold with boundary and let $ f , g: M \rightarrow \mathbf R $ be differentiable. Then

$$ \tag{a4 } \int\limits _ {\partial M } ( f dx + g dy) = \ {\int\limits \int\limits } _ { M } \left ( \frac{\partial g }{\partial x } - \frac{\partial f }{\partial y } \right ) dx dy . $$

Let $ M $ now be an oriented $ n $- dimensional Riemannian manifold, i.e. for each $ x \in M $ an orientation has been given on $ T _ {x} M $. The volume form $ \omega _ {M} $ on $ M $ is now defined by requiring that $ \omega _ {M} ( x) ( v _ {1} \dots v _ {n} ) = 1 $ for one (and hence each) orthonormal basis of $ T _ {x} M $ in the given orientation class of $ T _ {x} M $. Another consequence of the general Stokes' theorem (a3) is the divergence theorem:

$$ \tag{a5 } \int\limits _ { M } \mathop{\rm div} \psi dV = \ \int\limits _ {\partial M } \langle \psi , n \rangle dA . $$

Here $ \psi $ is a vector field on $ \mathbf R ^ {3} $, $ M $ is a three-dimensional oriented manifold in $ \mathbf R ^ {3} $, $ \mathop{\rm div} \psi = {\partial \psi _ {i} } / {\partial x _ {i} } $ if $ \psi = \sum \psi _ {i} \partial / {\partial x _ {i} } $, $ n $ is an outward normal to $ \partial M $, and $ dM $ and $ dA $ are, respectively, the volume and area elements of $ M $ and $ \partial M $. The inner product is induced from the standard one in $ \mathbf R ^ {3} $.

Finally there is the classical Stokes' formula: Let $ M \subset \mathbf R ^ {3} $ be an oriented two-dimensional submanifold with boundary $ \partial M $. Give $ \partial M $ an orientation such that together with the outward normal it gives back the orientation of $ M $. Let $ s $ parametrize $ \partial M $ and let $ \phi $ be the vector field on $ \partial M $ such that $ ds ( \phi ) = 1 $ everywhere. One then has the formula

$$ \tag{a6 } \int\limits _ { M } \langle \mathop{\rm curl} \psi , n \rangle dA = \ \int\limits _ {\partial M } \langle \psi , \phi \rangle ds , $$

where the curl of a vector field $ \psi $ on $ \mathbf R ^ {3} $ is defined by:

$$ \tag{a7 } \mathop{\rm curl} \psi = \ \left ( \frac{\partial \psi _ {3} }{\partial x _ {2} } - \frac{\partial \psi _ {2} }{\partial x _ {3} } \right ) { \frac \partial {\partial x _ {1} } } + $$

$$ + \left ( \frac{\partial \psi _ {1} }{\partial x _ {3} } - \frac{\partial \psi _ {3} }{\partial x _ {1} } \right ) { \frac \partial {\partial x _ {2} } } + \left ( \frac{\partial \psi _ {2} }{\partial x _ {1} } - \frac{\partial \psi _ {1} }{\partial x _ {2} } \right ) { \frac \partial {\partial x _ {3} } } . $$

All these theorems have higher-dimensional analogues.

References

[a1] M. Spivak, "Calculus on manifolds" , Benjamin (1965)
[a2] M. Hazewinkel, "A tutorial introduction to differentiable manifolds and calculus on manifolds" W. Schiehlen (ed.) W. Wedig (ed.) , Analysis and estimation of stochastic mechanical systems , Springer (Wien) (1988) pp. 316–340
How to Cite This Entry:
Integration on manifolds. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integration_on_manifolds&oldid=11797