|
|
Line 1: |
Line 1: |
− | A linear representation (cf. [[Representation of a Lie algebra|Representation of a Lie algebra]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814901.png" /> of a finite-dimensional semi-simple split Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814902.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814903.png" /> of characteristic zero with a split [[Cartan subalgebra|Cartan subalgebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814904.png" />, having the following properties.
| + | <!-- |
| + | r0814901.png |
| + | $#A+1 = 88 n = 0 |
| + | $#C+1 = 88 : ~/encyclopedia/old_files/data/R081/R.0801490 Representation with a highest weight vector |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | 1) In the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814905.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814906.png" /> there is a cyclic vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814907.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814908.png" /> is the smallest <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814909.png" />-invariant subspace containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149010.png" />).
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149011.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149013.png" /> is some fixed linear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149014.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149015.png" />.
| + | A linear representation (cf. [[Representation of a Lie algebra|Representation of a Lie algebra]]) $ \rho $ |
| + | of a finite-dimensional semi-simple split Lie algebra $ \mathfrak g $ |
| + | over a field $ k $ |
| + | of characteristic zero with a split [[Cartan subalgebra|Cartan subalgebra]] $ \mathfrak t $, |
| + | having the following properties. |
| | | |
− | 3) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149016.png" /> is a system of simple roots, defined by a lexicographical order on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149017.png" /> of all roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149018.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149019.png" /> (cf. [[Root system|Root system]]), and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149020.png" /> are the vectors from the Chevalley basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149021.png" /> corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149024.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149025.png" />. Thus, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149026.png" /> is a weight relative to the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149027.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149028.png" /> (cf. [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]]); it is called a highest weight. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149029.png" /> is called a cyclic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149033.png" />-module with highest weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149034.png" /> and generator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149035.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149036.png" /> is called a highest weight vector.
| + | 1) In the space $ V $ |
| + | of $ \rho $ |
| + | there is a cyclic vector $ v $( |
| + | i.e. $ V $ |
| + | is the smallest $ \mathfrak g $- |
| + | invariant subspace containing $ v $). |
| | | |
− | There exists for every linear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149037.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149038.png" /> a unique, up to equivalence, irreducible representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149039.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149040.png" /> with highest weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149041.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149042.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149043.png" /> determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149044.png" /> is a direct sum of weight subspaces relative to the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149045.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149046.png" />. Their weights have the form
| + | 2) $ \rho ( h) v = \lambda ( h) v $ |
| + | for all $ h \in \mathfrak t $, |
| + | where $ \lambda $ |
| + | is some fixed linear form on $ \mathfrak t $ |
| + | with values in $ k $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149047.png" /></td> </tr></table>
| + | 3) If $ \alpha _ {1} \dots \alpha _ {r} $ |
| + | is a system of simple roots, defined by a lexicographical order on the set $ \Delta $ |
| + | of all roots of $ \mathfrak g $ |
| + | relative to $ \mathfrak t $( |
| + | cf. [[Root system|Root system]]), and if $ e _ {\alpha _ {i} } , \mathfrak t _ {\alpha _ {i} } , h _ {\alpha _ {i} } $ |
| + | are the vectors from the Chevalley basis of $ \mathfrak g $ |
| + | corresponding to $ \alpha _ {i} $, |
| + | $ i = 1 \dots r $, |
| + | then $ \rho ( e _ {\alpha _ {i} } ) ( v) = 0 $ |
| + | for all $ i = 1 \dots r $. |
| + | Thus, $ \lambda $ |
| + | is a weight relative to the restriction of $ \rho $ |
| + | to $ \mathfrak t $( |
| + | cf. [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]]); it is called a highest weight. The space $ V $ |
| + | is called a cyclic $ \mathfrak g $- |
| + | module with highest weight $ \lambda $ |
| + | and generator $ v $, |
| + | and $ v $ |
| + | is called a highest weight vector. |
| | | |
− | where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149048.png" /> are non-negative integers. The weight subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149049.png" /> of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149050.png" /> is finite-dimensional, spanned over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149051.png" /> by vectors of the form
| + | There exists for every linear form $ \lambda $ |
| + | on $ \mathfrak t $ |
| + | a unique, up to equivalence, irreducible representation $ \rho _ \lambda $ |
| + | of $ \mathfrak g $ |
| + | with highest weight $ \lambda $. |
| + | The $ \mathfrak g $- |
| + | module $ V ( \lambda ) $ |
| + | determined by $ \rho _ \lambda $ |
| + | is a direct sum of weight subspaces relative to the restriction of $ \rho _ \lambda $ |
| + | to $ \mathfrak t $. |
| + | Their weights have the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149052.png" /></td> </tr></table>
| + | $$ |
| + | \lambda - |
| + | \sum _ {i = 1 } ^ { r } |
| + | n _ {i} \alpha _ {i} , |
| + | $$ |
| | | |
− | and for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149053.png" /> the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149054.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149055.png" /> is the operator of scalar multiplication by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149056.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149057.png" /> is one-dimensional; the weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149058.png" /> is the only highest weight of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149059.png" /> and can be characterized as the unique weight of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149060.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149061.png" /> such that any other weight has the form
| + | where the $ n _ {i} $ |
| + | are non-negative integers. The weight subspace $ V _ \mu ( \lambda ) $ |
| + | of weight $ \mu $ |
| + | is finite-dimensional, spanned over $ k $ |
| + | by vectors of the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149062.png" /></td> </tr></table>
| + | $$ |
| + | ( \rho _ \lambda ( f _ {\alpha _ {i _ {1} } } ) \dots |
| + | \rho _ \lambda ( f _ {\alpha _ {i _ {s} } } ) ) ( v ) , |
| + | $$ |
| | | |
− | where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149063.png" /> are non-negative integers.
| + | and for any $ h \in \mathfrak t $ |
| + | the restriction of $ \rho _ \lambda ( h) $ |
| + | to $ V _ \mu ( \lambda ) $ |
| + | is the operator of scalar multiplication by $ \mu ( h) $. |
| + | The space $ V _ \lambda ( \lambda ) $ |
| + | is one-dimensional; the weight $ \lambda $ |
| + | is the only highest weight of $ \rho _ \lambda $ |
| + | and can be characterized as the unique weight of the $ \mathfrak t $- |
| + | module $ V ( \lambda ) $ |
| + | such that any other weight has the form |
| | | |
− | A representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149064.png" /> is finite-dimensional if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149065.png" /> is a dominant linear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149066.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149067.png" /> is a non-negative integer for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149068.png" />. Every irreducible finite-dimensional linear representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149069.png" /> has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149070.png" /> for some dominant linear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149071.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149072.png" /> (hence all such representations are classified, up to equivalence, by the dominant linear forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149073.png" />). The set of all weights of a finite-dimensional representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149074.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149075.png" /> is invariant relative to the [[Weyl group|Weyl group]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149076.png" /> (regarded as a group of linear transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149077.png" />), and if weights <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149078.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149079.png" /> belong to one orbit of the Weyl group, then the dimensions of the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149080.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149081.png" /> are equal. For every weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149082.png" /> and every root <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149083.png" /> the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149084.png" /> is an integer; if, moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149085.png" /> is also a weight, then
| + | $$ |
| + | \lambda - |
| + | \sum _ {i = 1 } ^ { r } |
| + | n _ {i} \alpha _ {i} , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149086.png" /></td> </tr></table>
| + | where the $ n _ {i} $ |
| + | are non-negative integers. |
| | | |
− | (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149087.png" /> is the element in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149088.png" /> corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149089.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149090.png" /> is the root vector of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149091.png" />). | + | A representation $ \rho _ \lambda $ |
| + | is finite-dimensional if and only if $ \lambda $ |
| + | is a dominant linear form on $ \mathfrak t $, |
| + | i.e. $ \lambda ( h _ {\alpha _ {i} } ) $ |
| + | is a non-negative integer for $ i = 1 \dots r $. |
| + | Every irreducible finite-dimensional linear representation of $ \mathfrak g $ |
| + | has the form $ \rho _ \lambda $ |
| + | for some dominant linear form $ \lambda $ |
| + | on $ \mathfrak t $( |
| + | hence all such representations are classified, up to equivalence, by the dominant linear forms on $ \mathfrak t $). |
| + | The set of all weights of a finite-dimensional representation $ \rho _ \lambda $ |
| + | relative to $ \mathfrak t $ |
| + | is invariant relative to the [[Weyl group|Weyl group]] of $ \mathfrak g $( |
| + | regarded as a group of linear transformations of $ \mathfrak t $), |
| + | and if weights $ \mu $ |
| + | and $ \gamma $ |
| + | belong to one orbit of the Weyl group, then the dimensions of the spaces $ V _ \mu ( \lambda ) $ |
| + | and $ V _ \gamma ( \lambda ) $ |
| + | are equal. For every weight $ \mu $ |
| + | and every root $ \alpha \in \Delta $ |
| + | the number $ \mu ( h _ \alpha ) $ |
| + | is an integer; if, moreover, $ \mu + \alpha $ |
| + | is also a weight, then |
| + | |
| + | $$ |
| + | \rho ( e _ \alpha ) |
| + | ( V _ \mu ( \lambda )) \neq 0 |
| + | $$ |
| + | |
| + | (here $ h _ \alpha $ |
| + | is the element in $ \mathfrak t $ |
| + | corresponding to $ \alpha $ |
| + | and $ e _ \alpha $ |
| + | is the root vector of $ \alpha $). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> , ''Theórie des algèbres de Lie. Topologie des groupes de Lie'' , ''Sem. S. Lie'' , '''Ie année 1954–1955''' , Secr. Math. Univ. Paris (1955)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Cartan, "Les tenseurs irréductibles et les groupes linéaires simples et semi-simples" ''Bull. Sci. Math.'' , '''49''' (1925) pp. 130–152</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> Harish-Chandra, "On some applications of the universal enveloping algebra of a semisimple Lie algebra" ''Trans. Amer. Math. Soc.'' , '''70''' (1951) pp. 28–96</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> , ''Theórie des algèbres de Lie. Topologie des groupes de Lie'' , ''Sem. S. Lie'' , '''Ie année 1954–1955''' , Secr. Math. Univ. Paris (1955)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Cartan, "Les tenseurs irréductibles et les groupes linéaires simples et semi-simples" ''Bull. Sci. Math.'' , '''49''' (1925) pp. 130–152</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> Harish-Chandra, "On some applications of the universal enveloping algebra of a semisimple Lie algebra" ''Trans. Amer. Math. Soc.'' , '''70''' (1951) pp. 28–96</TD></TR></table> |
A linear representation (cf. Representation of a Lie algebra) $ \rho $
of a finite-dimensional semi-simple split Lie algebra $ \mathfrak g $
over a field $ k $
of characteristic zero with a split Cartan subalgebra $ \mathfrak t $,
having the following properties.
1) In the space $ V $
of $ \rho $
there is a cyclic vector $ v $(
i.e. $ V $
is the smallest $ \mathfrak g $-
invariant subspace containing $ v $).
2) $ \rho ( h) v = \lambda ( h) v $
for all $ h \in \mathfrak t $,
where $ \lambda $
is some fixed linear form on $ \mathfrak t $
with values in $ k $.
3) If $ \alpha _ {1} \dots \alpha _ {r} $
is a system of simple roots, defined by a lexicographical order on the set $ \Delta $
of all roots of $ \mathfrak g $
relative to $ \mathfrak t $(
cf. Root system), and if $ e _ {\alpha _ {i} } , \mathfrak t _ {\alpha _ {i} } , h _ {\alpha _ {i} } $
are the vectors from the Chevalley basis of $ \mathfrak g $
corresponding to $ \alpha _ {i} $,
$ i = 1 \dots r $,
then $ \rho ( e _ {\alpha _ {i} } ) ( v) = 0 $
for all $ i = 1 \dots r $.
Thus, $ \lambda $
is a weight relative to the restriction of $ \rho $
to $ \mathfrak t $(
cf. Weight of a representation of a Lie algebra); it is called a highest weight. The space $ V $
is called a cyclic $ \mathfrak g $-
module with highest weight $ \lambda $
and generator $ v $,
and $ v $
is called a highest weight vector.
There exists for every linear form $ \lambda $
on $ \mathfrak t $
a unique, up to equivalence, irreducible representation $ \rho _ \lambda $
of $ \mathfrak g $
with highest weight $ \lambda $.
The $ \mathfrak g $-
module $ V ( \lambda ) $
determined by $ \rho _ \lambda $
is a direct sum of weight subspaces relative to the restriction of $ \rho _ \lambda $
to $ \mathfrak t $.
Their weights have the form
$$
\lambda -
\sum _ {i = 1 } ^ { r }
n _ {i} \alpha _ {i} ,
$$
where the $ n _ {i} $
are non-negative integers. The weight subspace $ V _ \mu ( \lambda ) $
of weight $ \mu $
is finite-dimensional, spanned over $ k $
by vectors of the form
$$
( \rho _ \lambda ( f _ {\alpha _ {i _ {1} } } ) \dots
\rho _ \lambda ( f _ {\alpha _ {i _ {s} } } ) ) ( v ) ,
$$
and for any $ h \in \mathfrak t $
the restriction of $ \rho _ \lambda ( h) $
to $ V _ \mu ( \lambda ) $
is the operator of scalar multiplication by $ \mu ( h) $.
The space $ V _ \lambda ( \lambda ) $
is one-dimensional; the weight $ \lambda $
is the only highest weight of $ \rho _ \lambda $
and can be characterized as the unique weight of the $ \mathfrak t $-
module $ V ( \lambda ) $
such that any other weight has the form
$$
\lambda -
\sum _ {i = 1 } ^ { r }
n _ {i} \alpha _ {i} ,
$$
where the $ n _ {i} $
are non-negative integers.
A representation $ \rho _ \lambda $
is finite-dimensional if and only if $ \lambda $
is a dominant linear form on $ \mathfrak t $,
i.e. $ \lambda ( h _ {\alpha _ {i} } ) $
is a non-negative integer for $ i = 1 \dots r $.
Every irreducible finite-dimensional linear representation of $ \mathfrak g $
has the form $ \rho _ \lambda $
for some dominant linear form $ \lambda $
on $ \mathfrak t $(
hence all such representations are classified, up to equivalence, by the dominant linear forms on $ \mathfrak t $).
The set of all weights of a finite-dimensional representation $ \rho _ \lambda $
relative to $ \mathfrak t $
is invariant relative to the Weyl group of $ \mathfrak g $(
regarded as a group of linear transformations of $ \mathfrak t $),
and if weights $ \mu $
and $ \gamma $
belong to one orbit of the Weyl group, then the dimensions of the spaces $ V _ \mu ( \lambda ) $
and $ V _ \gamma ( \lambda ) $
are equal. For every weight $ \mu $
and every root $ \alpha \in \Delta $
the number $ \mu ( h _ \alpha ) $
is an integer; if, moreover, $ \mu + \alpha $
is also a weight, then
$$
\rho ( e _ \alpha )
( V _ \mu ( \lambda )) \neq 0
$$
(here $ h _ \alpha $
is the element in $ \mathfrak t $
corresponding to $ \alpha $
and $ e _ \alpha $
is the root vector of $ \alpha $).
References
[1] | N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979)) |
[2] | , Theórie des algèbres de Lie. Topologie des groupes de Lie , Sem. S. Lie , Ie année 1954–1955 , Secr. Math. Univ. Paris (1955) |
[3] | D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian) |
[4] | E. Cartan, "Les tenseurs irréductibles et les groupes linéaires simples et semi-simples" Bull. Sci. Math. , 49 (1925) pp. 130–152 |
[5] | Harish-Chandra, "On some applications of the universal enveloping algebra of a semisimple Lie algebra" Trans. Amer. Math. Soc. , 70 (1951) pp. 28–96 |