Difference between revisions of "Berwald connection"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | b1103901.png | ||
+ | $#A+1 = 110 n = 0 | ||
+ | $#C+1 = 110 : ~/encyclopedia/old_files/data/B110/B.1100390 Berwald connection | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Let $ {\widetilde{T} } M ^ {n} $ | |
+ | denote the [[Tangent bundle|tangent bundle]] of a smooth $ n $- | ||
+ | dimensional [[Manifold|manifold]] $ M ^ {n} $, | ||
+ | with zero-section removed. In [[Finsler geometry|Finsler geometry]], one starts with a smooth metric function $ F : { {\widetilde{T} } M ^ {n} } \rightarrow {\mathbf R ^ {1} } $ | ||
+ | and its associated metric tensor, given locally by | ||
− | + | $$ | |
+ | g _ {ij } ( x,y ) = { | ||
+ | \frac{1}{2} | ||
+ | } {\dot \partial } _ {i} {\dot \partial } _ {j} F ^ {2} , \quad i,j = 1 \dots n, | ||
+ | $$ | ||
− | where | + | where $ ( x ^ {i} ,y ^ {i} ) $ |
+ | are the $ 2n $ | ||
+ | coordinates (positions and velocities) and $ \partial _ {i} $ | ||
+ | and $ {\dot \partial } _ {j} $ | ||
+ | denote partial differentials with respect to $ x ^ {i} $ | ||
+ | and $ y ^ {j} $, | ||
+ | respectively. It is assumed that $ ( g _ {ij } ) $ | ||
+ | is non-singular on $ {\widetilde{T} } M ^ {n} $ | ||
+ | and that $ F $ | ||
+ | and $ g _ {ij } $ | ||
+ | extend continuously to the entire tangent bundle $ TM ^ {n} $. | ||
+ | The pair $ ( M ^ {n} ,F ) $ | ||
+ | is called a Finsler space. The Euler–Lagrange equations (cf. [[Euler–Lagrange equation|Euler–Lagrange equation]]) of $ ( M ^ {n} ,F ) $ | ||
+ | describe geodesics (cf. [[Geodesic line|Geodesic line]]) and have the local description | ||
− | + | $$ | |
+ | { | ||
+ | \frac{dy ^ {i} }{ds } | ||
+ | } + \gamma _ {jk } ^ {i} ( x,b ) y ^ {j} y ^ {k} = 0, \quad { | ||
+ | \frac{dx ^ {i} }{ds } | ||
+ | } = y ^ {i} , | ||
+ | $$ | ||
− | + | where the differential of arc length is $ ds = F ( x,dx ) $ | |
+ | and $ \gamma _ {jk } ^ {i} ( x,y ) $ | ||
+ | are the usual Levi-Cività (or Christoffel) symbols (cf. [[Christoffel symbol|Christoffel symbol]]) in terms of $ g _ {ij } ( x,y ) $, | ||
+ | its inverse $ g ^ {ij } ( x,y ) $ | ||
+ | and $ \partial _ {i} g _ {kl } $. | ||
+ | Note that the $ \gamma _ {jk } ^ {i} $ | ||
+ | depend on $ y $. | ||
+ | This is not the case in [[Riemannian geometry|Riemannian geometry]], where they are the coefficients of a unique, metric compatible, symmetric connection. In Finsler geometry there are several important connections, but $ \gamma _ {jk } ^ {i} ( x,y ) $ | ||
+ | itself is not a [[Connection|connection]]. One way to proceed is as follows. Let $ G ^ {i} = ( {1 / 2 } ) \gamma _ {jk } ^ {i} y ^ {j} y ^ {k} $ | ||
+ | and form $ G _ {j} ^ {i} ( x,y ) = {\dot \partial } _ {j} G ^ {i} ( x,y ) $ | ||
+ | and $ G _ {jk } ^ {i} ( x,y ) = {\dot \partial } _ {k} G _ {j} ^ {i} ( x,y ) $. | ||
+ | It can be readily proved that the $ G _ {jk } ^ {i} ( x,y ) $ | ||
+ | transform like a classical [[Affine connection|affine connection]], in spite of their dependence on $ y $, | ||
+ | i.e. | ||
− | + | $$ | |
+ | G _ {jk } ^ {i} X _ {b} ^ {j} X _ {c} ^ {k} = {\overline{G}\; } _ {bc } ^ {a} X _ {a} ^ {i} + { | ||
+ | \frac{\partial X ^ {i} _ {b} }{\partial {\overline{x}\; } ^ {c} } | ||
+ | } , \quad X ^ {i} _ {b} = { | ||
+ | \frac{\partial X ^ {i} }{\partial {\overline{x}\; } ^ {b} } | ||
+ | } . | ||
+ | $$ | ||
− | + | Also, the $ G _ {j} ^ {i} ( x,y ) $ | |
+ | have a transformation law induced from that of $ G _ {jk } ^ {i} ( x,y ) $, | ||
+ | because $ G _ {j} ^ {i} = G _ {jk } ^ {i} y ^ {k} $, | ||
+ | by the [[Euler theorem|Euler theorem]] on homogeneous functions. Note that $ G ^ {i} $, | ||
+ | $ G _ {j} ^ {i} $ | ||
+ | and $ G _ {jk } ^ {i} $ | ||
+ | are positively homogeneous in $ y ^ {k} $ | ||
+ | of degree two, one and zero, respectively. The triple $ B \Gamma = ( G _ {jk } ^ {i} ( x,y ) ,G _ {j} ^ {i} ( x,y ) ,0 ) $ | ||
+ | is an example of a pre-Finsler connection [[#References|[a1]]], $ F \Gamma = ( F _ {jk } ^ {i} ( x,y ) , N _ {j} ^ {i} ( x,y ) ,V _ {jk } ^ {i} ( x,y ) ) $, | ||
+ | meaning that: | ||
− | 3) | + | 1) the $ F _ {jk } ^ {i} ( x,y ) $ |
+ | transform just like the $ n ^ {3} $ | ||
+ | functions $ G _ {jk } ^ {i} ( x,y ) $ | ||
+ | above (they are called the coefficients of the pre-Finsler connection on $ ( M ^ {n} ,F ) $); | ||
− | + | 2) the $ n ^ {2} $ | |
+ | functions $ N _ {j} ^ {i} ( x,y ) $ | ||
+ | transform just like $ G _ {j} ^ {i} ( x,y ) $( | ||
+ | they are called the coefficients of a non-linear connection on $ {\widetilde{T} } M ^ {n} $) | ||
+ | and | ||
− | + | 3) $ V _ {jk } ^ {i} ( x,y ) $ | |
+ | is a tensor (cf. [[Tensor calculus|Tensor calculus]]) on $ M ^ {n} $. | ||
− | + | Using these local expressions one can further introduce the vertical covariant derivative $ \nabla ^ {\textrm{ V } } $ | |
+ | and the horizontal covariant derivative $ \nabla ^ {\textrm{ H } } $, | ||
+ | as follows: for any contravariant vector $ A ^ {r} ( x,y ) $, | ||
+ | set | ||
− | + | 1) $ \nabla _ {j} ^ {\textrm{ H } } A ^ {i} = \delta _ {j} A ^ {i} + A ^ {r} F _ {rj } ^ {i} $ | |
+ | and | ||
− | + | 2) $ \nabla _ {j} ^ {\textrm{ V } } A ^ {i} = {\dot \partial } _ {j} A ^ {i} + A ^ {r} V _ {rj } ^ {i} $, | |
+ | where $ \delta _ {i} = \partial _ {i} - N _ {j} ^ {r} {\dot \partial } _ {r} $ | ||
+ | is the Finsler delta-derivative operator on $ ( M ^ {n} ,F ) $ | ||
+ | corresponding to the non-linear connection $ N _ {j} ^ {i} ( x,y ) $. | ||
+ | The important thing is that for any function $ f : { {\widetilde{T} } M ^ {n} } \rightarrow {\mathbf R ^ {1} } $, | ||
+ | $ \delta _ {i} f $ | ||
+ | is a covariant vector. Similar rules for higher-order tensors $ A ( x,y ) $ | ||
+ | are just what one expects and all of the above have global descriptions. | ||
− | + | The Okada theorem states that for a pre–Finsler connection $ F \Gamma = ( F _ {jk } ^ {i} , N _ {j} ^ {i} , V _ {jk } ^ {i} ) $ | |
+ | on $ ( M ^ {n} ,F ) $ | ||
+ | such that: | ||
− | one has | + | $$ |
+ | \nabla ^ {\textrm{ H } } F = 0, \quad F _ {jk } ^ {i} = F _ {kj } ^ {i} , \quad N _ {j} ^ {i} = F _ {rj } ^ {i} y ^ {r} , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | {\dot \partial } _ {k} N _ {j} ^ {i} = F _ {kj } ^ {i} , \quad V _ {jk } ^ {i} = 0, | ||
+ | $$ | ||
+ | |||
+ | one has $ F \Gamma = B \Gamma = ( G _ {jk } ^ {i} ,G _ {j} ^ {i} ,0 ) $. | ||
+ | The pre-Finsler connection $ B \Gamma $ | ||
+ | is the so-called Berwald connection on $ ( M ^ {n} ,F ) $. | ||
==Curvature of the Berwald connection.== | ==Curvature of the Berwald connection.== | ||
− | If | + | If $ A ^ {i} ( x,y ) $ |
+ | is a contravariant vector, then | ||
− | + | $$ | |
+ | \nabla _ {k} ^ {\textrm{ V } } \nabla _ {j} ^ {\textrm{ H } } A ^ {i} - \nabla _ {j} ^ {\textrm{ H } } \nabla _ {k} ^ {\textrm{ V } } A ^ {i} = A ^ {r} G _ {rjk } ^ {i} , | ||
+ | $$ | ||
− | where | + | where $ G _ {rjk } ^ {i} = \nabla _ {k} ^ {\textrm{ V } } G _ {rj } ^ {i} $ |
+ | defines the so-called (HV)-curvature, also known as the spray curvature or Douglas tensor [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]]) of $ B \Gamma $. | ||
+ | Also, | ||
− | + | $$ | |
+ | \nabla _ {k} ^ {\textrm{ H } } \nabla _ {j} ^ {\textrm{ H } } A ^ {i} - \nabla _ {j} ^ {\textrm{ H } } \nabla _ {k} ^ {\textrm{ H } } A ^ {i} = A ^ {h} B _ {hjk } ^ {i} - ( \nabla _ {l} ^ {\textrm{ V } } A ^ {i} ) R _ {jk } ^ {l} , | ||
+ | $$ | ||
where the Berwald curvature tensor is | where the Berwald curvature tensor is | ||
− | + | $$ | |
+ | B _ {hjk } ^ {i} = \partial _ {k} G _ {hj } ^ {i} - G _ {k} ^ {r} ( {\dot \partial } _ {r} G _ {hj } ^ {i} ) + G _ {hj } ^ {r} G _ {rk } ^ {i} - ( {j / k } ) | ||
+ | $$ | ||
− | and the VH-torsion tensor of | + | and the VH-torsion tensor of $ B \Gamma $ |
+ | is | ||
− | + | $$ | |
+ | R _ {jk } ^ {l} = \partial _ {k} G _ {j} ^ {l} - G _ {jr } ^ {l} G _ {k} ^ {r} - ( {j / k } ) . | ||
+ | $$ | ||
− | Here, the symbol | + | Here, the symbol $ ( {j / k } ) $ |
+ | denotes that the entire expression before it is to be rewritten with the indices $ j $ | ||
+ | and $ k $ | ||
+ | interchanged. | ||
− | A fundamental result in Berwald geometry is that both | + | A fundamental result in Berwald geometry is that both $ B _ {hjk } ^ {i} = 0 $ |
+ | and $ G _ {jkl } ^ {i} = 0 $ | ||
+ | if and only if $ ( M ^ {n} ,F ) $ | ||
+ | is locally Minkowski. (Being locally Minkowski means that there is an admissible change of coordinates $ x \rightarrow {\overline{x}\; } $ | ||
+ | so that $ F ( {\overline{x}\; } , {\overline{y}\; } ) $ | ||
+ | is actually independent of $ {\overline{x}\; } ^ {i} $.) | ||
+ | Consequently, the geodesics in such a space have the local expression $ {\overline{x}\; } ^ {i} = a ^ {i} s + b ^ {i} $, | ||
+ | $ i = 1 \dots n $. | ||
Now, generally, in Berwald theory one has | Now, generally, in Berwald theory one has | ||
− | + | $$ | |
+ | R _ {jk } ^ {i} = B _ {hjk } ^ {i} y ^ {h} , | ||
+ | $$ | ||
− | whereas for | + | whereas for $ n = 2 $, |
− | + | $$ | |
+ | R _ {jk } ^ {i} = \epsilon FK m ^ {i} ( l _ {j} m _ {k} - l _ {k} m _ {j} ) , | ||
+ | $$ | ||
− | so that | + | so that $ B _ {hjk } ^ {i} $ |
+ | is completely determined by the so-called Berwald–Gauss curvature $ K ( x,y ) $ | ||
+ | of $ ( M ^ {n} ,F ) $. | ||
+ | The number $ \epsilon $ | ||
+ | equals $ + 1 $ | ||
+ | if $ g _ {ij } $ | ||
+ | is positive definite and $ - 1 $ | ||
+ | otherwise. The pair of contravariant vectors $ ( l ^ {i} ,m ^ {j} ) $, | ||
+ | where $ l ^ {i} = { {y ^ {i} } / F } $, | ||
+ | is called the Berwald frame. The $ m ^ {i} $ | ||
+ | are normal vectors and are oriented. They are both of unit length and orthogonal relative to $ g _ {ij } ( x,y ) $. | ||
+ | Of course, $ l _ {i} = g _ {ij } l ^ {j} $ | ||
+ | and $ m _ {i} = g _ {ij } m ^ {j} $. | ||
+ | The scalar invariant $ K ( x,y ) $ | ||
+ | is positively homogeneous of degree zero in $ y ^ {i} $. | ||
+ | If $ K > 0 $ | ||
+ | everywhere, then the geodesics of $ ( M ^ {n} ,F ) $ | ||
+ | are Lyapunov stable (cf. [[Lyapunov stability|Lyapunov stability]]); if $ K \leq 0 $ | ||
+ | everywhere, they are unstable [[#References|[a1]]], [[#References|[a4]]]. | ||
See also [[Berwald space|Berwald space]]. | See also [[Berwald space|Berwald space]]. |
Latest revision as of 10:58, 29 May 2020
Let $ {\widetilde{T} } M ^ {n} $
denote the tangent bundle of a smooth $ n $-
dimensional manifold $ M ^ {n} $,
with zero-section removed. In Finsler geometry, one starts with a smooth metric function $ F : { {\widetilde{T} } M ^ {n} } \rightarrow {\mathbf R ^ {1} } $
and its associated metric tensor, given locally by
$$ g _ {ij } ( x,y ) = { \frac{1}{2} } {\dot \partial } _ {i} {\dot \partial } _ {j} F ^ {2} , \quad i,j = 1 \dots n, $$
where $ ( x ^ {i} ,y ^ {i} ) $ are the $ 2n $ coordinates (positions and velocities) and $ \partial _ {i} $ and $ {\dot \partial } _ {j} $ denote partial differentials with respect to $ x ^ {i} $ and $ y ^ {j} $, respectively. It is assumed that $ ( g _ {ij } ) $ is non-singular on $ {\widetilde{T} } M ^ {n} $ and that $ F $ and $ g _ {ij } $ extend continuously to the entire tangent bundle $ TM ^ {n} $. The pair $ ( M ^ {n} ,F ) $ is called a Finsler space. The Euler–Lagrange equations (cf. Euler–Lagrange equation) of $ ( M ^ {n} ,F ) $ describe geodesics (cf. Geodesic line) and have the local description
$$ { \frac{dy ^ {i} }{ds } } + \gamma _ {jk } ^ {i} ( x,b ) y ^ {j} y ^ {k} = 0, \quad { \frac{dx ^ {i} }{ds } } = y ^ {i} , $$
where the differential of arc length is $ ds = F ( x,dx ) $ and $ \gamma _ {jk } ^ {i} ( x,y ) $ are the usual Levi-Cività (or Christoffel) symbols (cf. Christoffel symbol) in terms of $ g _ {ij } ( x,y ) $, its inverse $ g ^ {ij } ( x,y ) $ and $ \partial _ {i} g _ {kl } $. Note that the $ \gamma _ {jk } ^ {i} $ depend on $ y $. This is not the case in Riemannian geometry, where they are the coefficients of a unique, metric compatible, symmetric connection. In Finsler geometry there are several important connections, but $ \gamma _ {jk } ^ {i} ( x,y ) $ itself is not a connection. One way to proceed is as follows. Let $ G ^ {i} = ( {1 / 2 } ) \gamma _ {jk } ^ {i} y ^ {j} y ^ {k} $ and form $ G _ {j} ^ {i} ( x,y ) = {\dot \partial } _ {j} G ^ {i} ( x,y ) $ and $ G _ {jk } ^ {i} ( x,y ) = {\dot \partial } _ {k} G _ {j} ^ {i} ( x,y ) $. It can be readily proved that the $ G _ {jk } ^ {i} ( x,y ) $ transform like a classical affine connection, in spite of their dependence on $ y $, i.e.
$$ G _ {jk } ^ {i} X _ {b} ^ {j} X _ {c} ^ {k} = {\overline{G}\; } _ {bc } ^ {a} X _ {a} ^ {i} + { \frac{\partial X ^ {i} _ {b} }{\partial {\overline{x}\; } ^ {c} } } , \quad X ^ {i} _ {b} = { \frac{\partial X ^ {i} }{\partial {\overline{x}\; } ^ {b} } } . $$
Also, the $ G _ {j} ^ {i} ( x,y ) $ have a transformation law induced from that of $ G _ {jk } ^ {i} ( x,y ) $, because $ G _ {j} ^ {i} = G _ {jk } ^ {i} y ^ {k} $, by the Euler theorem on homogeneous functions. Note that $ G ^ {i} $, $ G _ {j} ^ {i} $ and $ G _ {jk } ^ {i} $ are positively homogeneous in $ y ^ {k} $ of degree two, one and zero, respectively. The triple $ B \Gamma = ( G _ {jk } ^ {i} ( x,y ) ,G _ {j} ^ {i} ( x,y ) ,0 ) $ is an example of a pre-Finsler connection [a1], $ F \Gamma = ( F _ {jk } ^ {i} ( x,y ) , N _ {j} ^ {i} ( x,y ) ,V _ {jk } ^ {i} ( x,y ) ) $, meaning that:
1) the $ F _ {jk } ^ {i} ( x,y ) $ transform just like the $ n ^ {3} $ functions $ G _ {jk } ^ {i} ( x,y ) $ above (they are called the coefficients of the pre-Finsler connection on $ ( M ^ {n} ,F ) $);
2) the $ n ^ {2} $ functions $ N _ {j} ^ {i} ( x,y ) $ transform just like $ G _ {j} ^ {i} ( x,y ) $( they are called the coefficients of a non-linear connection on $ {\widetilde{T} } M ^ {n} $) and
3) $ V _ {jk } ^ {i} ( x,y ) $ is a tensor (cf. Tensor calculus) on $ M ^ {n} $.
Using these local expressions one can further introduce the vertical covariant derivative $ \nabla ^ {\textrm{ V } } $ and the horizontal covariant derivative $ \nabla ^ {\textrm{ H } } $, as follows: for any contravariant vector $ A ^ {r} ( x,y ) $, set
1) $ \nabla _ {j} ^ {\textrm{ H } } A ^ {i} = \delta _ {j} A ^ {i} + A ^ {r} F _ {rj } ^ {i} $ and
2) $ \nabla _ {j} ^ {\textrm{ V } } A ^ {i} = {\dot \partial } _ {j} A ^ {i} + A ^ {r} V _ {rj } ^ {i} $, where $ \delta _ {i} = \partial _ {i} - N _ {j} ^ {r} {\dot \partial } _ {r} $ is the Finsler delta-derivative operator on $ ( M ^ {n} ,F ) $ corresponding to the non-linear connection $ N _ {j} ^ {i} ( x,y ) $. The important thing is that for any function $ f : { {\widetilde{T} } M ^ {n} } \rightarrow {\mathbf R ^ {1} } $, $ \delta _ {i} f $ is a covariant vector. Similar rules for higher-order tensors $ A ( x,y ) $ are just what one expects and all of the above have global descriptions.
The Okada theorem states that for a pre–Finsler connection $ F \Gamma = ( F _ {jk } ^ {i} , N _ {j} ^ {i} , V _ {jk } ^ {i} ) $ on $ ( M ^ {n} ,F ) $ such that:
$$ \nabla ^ {\textrm{ H } } F = 0, \quad F _ {jk } ^ {i} = F _ {kj } ^ {i} , \quad N _ {j} ^ {i} = F _ {rj } ^ {i} y ^ {r} , $$
$$ {\dot \partial } _ {k} N _ {j} ^ {i} = F _ {kj } ^ {i} , \quad V _ {jk } ^ {i} = 0, $$
one has $ F \Gamma = B \Gamma = ( G _ {jk } ^ {i} ,G _ {j} ^ {i} ,0 ) $. The pre-Finsler connection $ B \Gamma $ is the so-called Berwald connection on $ ( M ^ {n} ,F ) $.
Curvature of the Berwald connection.
If $ A ^ {i} ( x,y ) $ is a contravariant vector, then
$$ \nabla _ {k} ^ {\textrm{ V } } \nabla _ {j} ^ {\textrm{ H } } A ^ {i} - \nabla _ {j} ^ {\textrm{ H } } \nabla _ {k} ^ {\textrm{ V } } A ^ {i} = A ^ {r} G _ {rjk } ^ {i} , $$
where $ G _ {rjk } ^ {i} = \nabla _ {k} ^ {\textrm{ V } } G _ {rj } ^ {i} $ defines the so-called (HV)-curvature, also known as the spray curvature or Douglas tensor [a1], [a2], [a3]) of $ B \Gamma $. Also,
$$ \nabla _ {k} ^ {\textrm{ H } } \nabla _ {j} ^ {\textrm{ H } } A ^ {i} - \nabla _ {j} ^ {\textrm{ H } } \nabla _ {k} ^ {\textrm{ H } } A ^ {i} = A ^ {h} B _ {hjk } ^ {i} - ( \nabla _ {l} ^ {\textrm{ V } } A ^ {i} ) R _ {jk } ^ {l} , $$
where the Berwald curvature tensor is
$$ B _ {hjk } ^ {i} = \partial _ {k} G _ {hj } ^ {i} - G _ {k} ^ {r} ( {\dot \partial } _ {r} G _ {hj } ^ {i} ) + G _ {hj } ^ {r} G _ {rk } ^ {i} - ( {j / k } ) $$
and the VH-torsion tensor of $ B \Gamma $ is
$$ R _ {jk } ^ {l} = \partial _ {k} G _ {j} ^ {l} - G _ {jr } ^ {l} G _ {k} ^ {r} - ( {j / k } ) . $$
Here, the symbol $ ( {j / k } ) $ denotes that the entire expression before it is to be rewritten with the indices $ j $ and $ k $ interchanged.
A fundamental result in Berwald geometry is that both $ B _ {hjk } ^ {i} = 0 $ and $ G _ {jkl } ^ {i} = 0 $ if and only if $ ( M ^ {n} ,F ) $ is locally Minkowski. (Being locally Minkowski means that there is an admissible change of coordinates $ x \rightarrow {\overline{x}\; } $ so that $ F ( {\overline{x}\; } , {\overline{y}\; } ) $ is actually independent of $ {\overline{x}\; } ^ {i} $.) Consequently, the geodesics in such a space have the local expression $ {\overline{x}\; } ^ {i} = a ^ {i} s + b ^ {i} $, $ i = 1 \dots n $.
Now, generally, in Berwald theory one has
$$ R _ {jk } ^ {i} = B _ {hjk } ^ {i} y ^ {h} , $$
whereas for $ n = 2 $,
$$ R _ {jk } ^ {i} = \epsilon FK m ^ {i} ( l _ {j} m _ {k} - l _ {k} m _ {j} ) , $$
so that $ B _ {hjk } ^ {i} $ is completely determined by the so-called Berwald–Gauss curvature $ K ( x,y ) $ of $ ( M ^ {n} ,F ) $. The number $ \epsilon $ equals $ + 1 $ if $ g _ {ij } $ is positive definite and $ - 1 $ otherwise. The pair of contravariant vectors $ ( l ^ {i} ,m ^ {j} ) $, where $ l ^ {i} = { {y ^ {i} } / F } $, is called the Berwald frame. The $ m ^ {i} $ are normal vectors and are oriented. They are both of unit length and orthogonal relative to $ g _ {ij } ( x,y ) $. Of course, $ l _ {i} = g _ {ij } l ^ {j} $ and $ m _ {i} = g _ {ij } m ^ {j} $. The scalar invariant $ K ( x,y ) $ is positively homogeneous of degree zero in $ y ^ {i} $. If $ K > 0 $ everywhere, then the geodesics of $ ( M ^ {n} ,F ) $ are Lyapunov stable (cf. Lyapunov stability); if $ K \leq 0 $ everywhere, they are unstable [a1], [a4].
See also Berwald space.
References
[a1] | P.L. Antonelli, R.S. Ingarden, M. Matsumoto, "The theory of sprays and Finsler spaces with applications in physics and biology" , Kluwer Acad. Publ. (1993) |
[a2] | P.L. Antonelli, T. (eds.) Zastawniak, "Lagrange geometry, Finsler spaces and noise applied in biology and physics" Math. and Comput. Mod. (Special Issue) , 20 (1994) |
[a3] | M. Matsumoto, "Foundations of Finsler geometry and special Finsler spaces" , Kaiseisha Press (1986) |
[a4] | H. Rund, "The differential geometry of Finsler spaces" , Springer (1959) |
Berwald connection. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Berwald_connection&oldid=11677