Difference between revisions of "Gell-Mann formula"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | g1101101.png | ||
+ | $#A+1 = 36 n = 0 | ||
+ | $#C+1 = 36 : ~/encyclopedia/old_files/data/G110/G.1100110 Gell\AAnMann formula | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A prescription for constructing anti-Hermitian representations of a symmetric [[Lie algebra|Lie algebra]] (over the real numbers) $ \mathfrak g $ | |
+ | from representations of an Inönü–Wigner contraction $ {\overline{\mathfrak g}\; } $. | ||
+ | One assumes that $ \mathfrak g = \mathfrak k + \mathfrak p $ | ||
+ | is a direct sum of vector spaces and | ||
− | + | $$ | |
+ | [ \mathfrak k, \mathfrak k ] \subset \mathfrak k, [ \mathfrak k, \mathfrak p ] \subset \mathfrak p, [ \mathfrak p, \mathfrak p ] \subset \mathfrak k. | ||
+ | $$ | ||
− | + | Then $ {\overline{\mathfrak g}\; } = {\overline{\mathfrak k}\; } + {\overline{\mathfrak p}\; } $ | |
+ | and there exists an isomorphism of vector spaces $ \pi : \mathfrak g \rightarrow { {\overline{\mathfrak g}\; } } $ | ||
+ | such that $ \pi ( \mathfrak k ) = {\overline{\mathfrak k}\; } $, | ||
+ | $ \pi ( \mathfrak p ) = {\overline{\mathfrak p}\; } $ | ||
+ | and $ [ \pi ( X ) , \pi ( Y ) ] = \pi ( [ X,Y ] ) $ | ||
+ | for all $ X \in \mathfrak k $, | ||
+ | $ Y \in \mathfrak g $. | ||
+ | In addition, one has $ [ {\overline{\mathfrak p}\; } , {\overline{\mathfrak p}\; } ] = 0 $. | ||
− | + | The best studied examples concern the (pseudo-) orthogonal algebras, when $ \mathfrak g = \mathfrak s \mathfrak o ( m + 1,n ) $ | |
+ | or $ \mathfrak g = \mathfrak s \mathfrak o ( m,n + 1 ) $ | ||
+ | and $ \mathfrak k = \mathfrak s \mathfrak o ( m,n ) $[[#References|[a1]]], [[#References|[a2]]]. Then $ {\overline{\mathfrak g}\; } = \mathfrak i \mathfrak s \mathfrak o ( m,n ) $ | ||
+ | is an inhomogeneous Lie algebra with $ {\overline{\mathfrak p}\; } = \mathbf R ^ {m + n } $. | ||
+ | Let $ M ^ {2} $ | ||
+ | be the quadratic $ {\overline{\mathfrak k}\; } $- | ||
+ | invariant element from the symmetric algebra of $ {\overline{\mathfrak p}\; } $. | ||
+ | If $ {\overline \rho \; } $ | ||
+ | is an anti-Hermitian representation of $ {\overline{\mathfrak g}\; } $ | ||
+ | such that $ {\overline \rho \; } ( M ^ {2} ) $ | ||
+ | is a multiple of the unit operator, then the formula for the representation $ \rho $ | ||
+ | of $ \mathfrak g $ | ||
+ | reads: $ \rho ( X ) = {\overline \rho \; } ( \pi ( X ) ) $ | ||
+ | for all $ X \in \mathfrak k $, | ||
+ | and, for all $ Y \in \mathfrak p $, | ||
+ | |||
+ | $$ | ||
+ | \rho ( Y ) = \lambda {\overline \rho \; } ( \pi ( Y ) ) + a [ {\overline \rho \; } ( \Delta ) , {\overline \rho \; } ( \pi ( Y ) ) ] , | ||
+ | $$ | ||
+ | |||
+ | where $ \Delta $ | ||
+ | is the second-degree Casimir element from the [[Universal enveloping algebra|universal enveloping algebra]] of $ {\overline{\mathfrak k}\; } $ | ||
+ | while $ \lambda $ | ||
+ | and $ a $ | ||
+ | are parameters. Here, $ \lambda $ | ||
+ | is real and arbitrary and $ a $ | ||
+ | is pure imaginary and depends on $ {\overline \rho \; } ( M ^ {2} ) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Weimar, "The range of validity of the Gell-Mann formula" ''Nuovo Cim. Lett.'' , '''4''' (1972) pp. 43–50</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Hermann, "Lie groups for physicists" , Benjamin (1966)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Weimar, "The range of validity of the Gell-Mann formula" ''Nuovo Cim. Lett.'' , '''4''' (1972) pp. 43–50</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Hermann, "Lie groups for physicists" , Benjamin (1966)</TD></TR></table> |
Latest revision as of 19:41, 5 June 2020
A prescription for constructing anti-Hermitian representations of a symmetric Lie algebra (over the real numbers) $ \mathfrak g $
from representations of an Inönü–Wigner contraction $ {\overline{\mathfrak g}\; } $.
One assumes that $ \mathfrak g = \mathfrak k + \mathfrak p $
is a direct sum of vector spaces and
$$ [ \mathfrak k, \mathfrak k ] \subset \mathfrak k, [ \mathfrak k, \mathfrak p ] \subset \mathfrak p, [ \mathfrak p, \mathfrak p ] \subset \mathfrak k. $$
Then $ {\overline{\mathfrak g}\; } = {\overline{\mathfrak k}\; } + {\overline{\mathfrak p}\; } $ and there exists an isomorphism of vector spaces $ \pi : \mathfrak g \rightarrow { {\overline{\mathfrak g}\; } } $ such that $ \pi ( \mathfrak k ) = {\overline{\mathfrak k}\; } $, $ \pi ( \mathfrak p ) = {\overline{\mathfrak p}\; } $ and $ [ \pi ( X ) , \pi ( Y ) ] = \pi ( [ X,Y ] ) $ for all $ X \in \mathfrak k $, $ Y \in \mathfrak g $. In addition, one has $ [ {\overline{\mathfrak p}\; } , {\overline{\mathfrak p}\; } ] = 0 $.
The best studied examples concern the (pseudo-) orthogonal algebras, when $ \mathfrak g = \mathfrak s \mathfrak o ( m + 1,n ) $ or $ \mathfrak g = \mathfrak s \mathfrak o ( m,n + 1 ) $ and $ \mathfrak k = \mathfrak s \mathfrak o ( m,n ) $[a1], [a2]. Then $ {\overline{\mathfrak g}\; } = \mathfrak i \mathfrak s \mathfrak o ( m,n ) $ is an inhomogeneous Lie algebra with $ {\overline{\mathfrak p}\; } = \mathbf R ^ {m + n } $. Let $ M ^ {2} $ be the quadratic $ {\overline{\mathfrak k}\; } $- invariant element from the symmetric algebra of $ {\overline{\mathfrak p}\; } $. If $ {\overline \rho \; } $ is an anti-Hermitian representation of $ {\overline{\mathfrak g}\; } $ such that $ {\overline \rho \; } ( M ^ {2} ) $ is a multiple of the unit operator, then the formula for the representation $ \rho $ of $ \mathfrak g $ reads: $ \rho ( X ) = {\overline \rho \; } ( \pi ( X ) ) $ for all $ X \in \mathfrak k $, and, for all $ Y \in \mathfrak p $,
$$ \rho ( Y ) = \lambda {\overline \rho \; } ( \pi ( Y ) ) + a [ {\overline \rho \; } ( \Delta ) , {\overline \rho \; } ( \pi ( Y ) ) ] , $$
where $ \Delta $ is the second-degree Casimir element from the universal enveloping algebra of $ {\overline{\mathfrak k}\; } $ while $ \lambda $ and $ a $ are parameters. Here, $ \lambda $ is real and arbitrary and $ a $ is pure imaginary and depends on $ {\overline \rho \; } ( M ^ {2} ) $.
References
[a1] | E. Weimar, "The range of validity of the Gell-Mann formula" Nuovo Cim. Lett. , 4 (1972) pp. 43–50 |
[a2] | R. Hermann, "Lie groups for physicists" , Benjamin (1966) |
Gell-Mann formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gell-Mann_formula&oldid=11628