Namespaces
Variants
Actions

Difference between revisions of "Comparison of topologies"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An order relation on the set of all topologies on one and the same set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236301.png" />. A topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236302.png" /> majorizes a topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236303.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236304.png" /> is not weaker than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236305.png" />), if the identity mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236306.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236307.png" /> is the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236308.png" /> with the topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236309.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363010.png" />, is continuous. Moreover, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363011.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363012.png" /> is stronger than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363013.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363014.png" /> is weaker than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363015.png" />).
+
<!--
 +
c0236301.png
 +
$#A+1 = 36 n = 0
 +
$#C+1 = 36 : ~/encyclopedia/old_files/data/C023/C.0203630 Comparison of topologies
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
An order relation on the set of all topologies on one and the same set $  X $.  
 +
A topology $  {\mathcal T} _ {1} $
 +
majorizes a topology $  {\mathcal T} _ {2} $(
 +
or $  {\mathcal T} _ {1} $
 +
is not weaker than $  {\mathcal T} _ {2} $),  
 +
if the identity mapping $  X _ {1} \rightarrow X _ {2} $,  
 +
where $  X _ {i} $
 +
is the set $  X $
 +
with the topology $  {\mathcal T} _ {i} $,
 +
$  i = 1, 2 $,  
 +
is continuous. Moreover, if $  {\mathcal T} _ {1} \neq {\mathcal T} _ {2} $,  
 +
then $  {\mathcal T} _ {1} $
 +
is stronger than $  {\mathcal T} _ {2} $(
 +
or $  {\mathcal T} _ {2} $
 +
is weaker than $  {\mathcal T} _ {1} $).
  
 
The following statements are equivalent:
 
The following statements are equivalent:
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363016.png" /> majorizes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363017.png" />.
+
1) $  {\mathcal T} _ {1} $
 +
majorizes $  {\mathcal T} _ {2} $.
  
2) For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363018.png" />, every neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363019.png" /> in the topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363020.png" /> is a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363021.png" /> in the topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363022.png" />.
+
2) For any $  x \in X $,  
 +
every neighbourhood of $  x $
 +
in the topology $  {\mathcal T} _ {2} $
 +
is a neighbourhood of $  x $
 +
in the topology $  {\mathcal T} _ {1} $.
  
3) For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363023.png" />, the closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363024.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363025.png" /> contains the closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363026.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363027.png" />.
+
3) For any $  A \subset  X $,  
 +
the closure of $  A $
 +
in $  {\mathcal T} _ {2} $
 +
contains the closure of $  A $
 +
in $  {\mathcal T} _ {1} $.
  
4) Every set from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363028.png" />, closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363029.png" />, is also closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363030.png" />.
+
4) Every set from $  X $,  
 +
closed in $  {\mathcal T} _ {2} $,  
 +
is also closed in $  {\mathcal T} _ {1} $.
  
5) Every set that is open in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363031.png" /> is open in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363032.png" />.
+
5) Every set that is open in $  {\mathcal T} _ {2} $
 +
is open in $  {\mathcal T} _ {1} $.
  
In the ordered set of topologies on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363033.png" />, the discrete topology is the strongest, while the topology whose only closed sets are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363035.png" /> is the weakest. Figuratively speaking, the stronger the topology, the more open sets, closed sets and neighbourhoods there are in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363036.png" />; the stronger the topology, the smaller the closure of a set (and the larger its interior) and the smaller the number of everywhere-dense sets.
+
In the ordered set of topologies on $  X $,  
 +
the discrete topology is the strongest, while the topology whose only closed sets are $  \emptyset $
 +
and $  X $
 +
is the weakest. Figuratively speaking, the stronger the topology, the more open sets, closed sets and neighbourhoods there are in $  X $;  
 +
the stronger the topology, the smaller the closure of a set (and the larger its interior) and the smaller the number of everywhere-dense sets.

Latest revision as of 17:45, 4 June 2020


An order relation on the set of all topologies on one and the same set $ X $. A topology $ {\mathcal T} _ {1} $ majorizes a topology $ {\mathcal T} _ {2} $( or $ {\mathcal T} _ {1} $ is not weaker than $ {\mathcal T} _ {2} $), if the identity mapping $ X _ {1} \rightarrow X _ {2} $, where $ X _ {i} $ is the set $ X $ with the topology $ {\mathcal T} _ {i} $, $ i = 1, 2 $, is continuous. Moreover, if $ {\mathcal T} _ {1} \neq {\mathcal T} _ {2} $, then $ {\mathcal T} _ {1} $ is stronger than $ {\mathcal T} _ {2} $( or $ {\mathcal T} _ {2} $ is weaker than $ {\mathcal T} _ {1} $).

The following statements are equivalent:

1) $ {\mathcal T} _ {1} $ majorizes $ {\mathcal T} _ {2} $.

2) For any $ x \in X $, every neighbourhood of $ x $ in the topology $ {\mathcal T} _ {2} $ is a neighbourhood of $ x $ in the topology $ {\mathcal T} _ {1} $.

3) For any $ A \subset X $, the closure of $ A $ in $ {\mathcal T} _ {2} $ contains the closure of $ A $ in $ {\mathcal T} _ {1} $.

4) Every set from $ X $, closed in $ {\mathcal T} _ {2} $, is also closed in $ {\mathcal T} _ {1} $.

5) Every set that is open in $ {\mathcal T} _ {2} $ is open in $ {\mathcal T} _ {1} $.

In the ordered set of topologies on $ X $, the discrete topology is the strongest, while the topology whose only closed sets are $ \emptyset $ and $ X $ is the weakest. Figuratively speaking, the stronger the topology, the more open sets, closed sets and neighbourhoods there are in $ X $; the stronger the topology, the smaller the closure of a set (and the larger its interior) and the smaller the number of everywhere-dense sets.

How to Cite This Entry:
Comparison of topologies. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Comparison_of_topologies&oldid=11528
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article