|
|
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| An integral | | An integral |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i0505501.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | $$\int f(x)dx\tag{*}$$ |
| | | |
− | of a given function of a single variable defined on some interval. It is the collection of all primitives of the given function on this interval. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i0505502.png" /> is defined on an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i0505503.png" /> of the real axis and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i0505504.png" /> is any primitive of it on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i0505505.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i0505506.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i0505507.png" />, then any other primitive of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i0505508.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i0505509.png" /> is of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i05055010.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i05055011.png" /> is a constant. Consequently, the indefinite integral (*) consists of all functions of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i05055012.png" />. | + | of a given function of a single variable defined on some interval. It is the collection of all primitives of the given function on this interval. If $f$ is defined on an interval $\Delta$ of the real axis and $F$ is any primitive of it on $\Delta$, that is, $F'(x)=f(x)$ for all $x\in\Delta$, then any other primitive of $f$ on $\Delta$ is of the form $F+C$, where $C$ is a constant. Consequently, the indefinite integral \ref{*} consists of all functions of the form $F+C$. |
| | | |
− | The indefinite Lebesgue integral of a summable function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i05055013.png" /> is the collection of all functions of the form | + | The indefinite Lebesgue integral of a summable function on $[a,b]$ is the collection of all functions of the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i05055014.png" /></td> </tr></table>
| + | $$F(x)=\int\limits_a^xf(t)dt+C.$$ |
| | | |
− | In this case the equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i05055015.png" /> holds, generally speaking, only almost-everywhere on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i05055016.png" />. | + | In this case the equality $F'(x)=f(x)$ holds, generally speaking, only almost-everywhere on $[a,b]$. |
| | | |
− | An indefinite Lebesgue integral (in the wide sense) of a summable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i05055017.png" /> defined on a measure space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i05055018.png" /> with measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i05055019.png" /> is the name for the set function | + | An indefinite Lebesgue integral (in the wide sense) of a summable function $f$ defined on a measure space $X$ with measure $\mu$ is the name for the set function |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i05055020.png" /></td> </tr></table>
| + | $$\int\limits_Ef(x)d_\mu x,$$ |
| | | |
− | defined on the collection of all measurable sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i05055021.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050550/i05055022.png" />. | + | defined on the collection of all measurable sets $E$ in $X$. |
| | | |
| ====References==== | | ====References==== |
Revision as of 14:41, 10 August 2014
An integral
$$\int f(x)dx\tag{*}$$
of a given function of a single variable defined on some interval. It is the collection of all primitives of the given function on this interval. If $f$ is defined on an interval $\Delta$ of the real axis and $F$ is any primitive of it on $\Delta$, that is, $F'(x)=f(x)$ for all $x\in\Delta$, then any other primitive of $f$ on $\Delta$ is of the form $F+C$, where $C$ is a constant. Consequently, the indefinite integral \ref{*} consists of all functions of the form $F+C$.
The indefinite Lebesgue integral of a summable function on $[a,b]$ is the collection of all functions of the form
$$F(x)=\int\limits_a^xf(t)dt+C.$$
In this case the equality $F'(x)=f(x)$ holds, generally speaking, only almost-everywhere on $[a,b]$.
An indefinite Lebesgue integral (in the wide sense) of a summable function $f$ defined on a measure space $X$ with measure $\mu$ is the name for the set function
$$\int\limits_Ef(x)d_\mu x,$$
defined on the collection of all measurable sets $E$ in $X$.
References
[1] | A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) (Translated from Russian) |
[2] | S.M. Nikol'skii, "A course of mathematical analysis" , 1–2 , MIR (1977) (Translated from Russian) |
[3] | V.A. Il'in, E.G. Poznyak, "Fundamentals of mathematical analysis" , 1–2 , MIR (1982) (Translated from Russian) |
For additional references see Improper integral; Integral.
How to Cite This Entry:
Indefinite integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Indefinite_integral&oldid=11527
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article