Namespaces
Variants
Actions

Difference between revisions of "Unramified character"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A character (cf. [[Character of a group|Character of a group]]) of the [[Galois group|Galois group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u0957801.png" /> of a Galois extension of local fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u0957802.png" /> that is trivial on the inertia subgroup. Any unramified character can be regarded as a character of the Galois group of the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u0957803.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u0957804.png" /> is the maximal unramified subfield of the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u0957805.png" />. The unramified characters form a subgroup of the group of all characters. A character of the multiplicative group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u0957806.png" /> of a local field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u0957807.png" /> that is trivial on the group of units of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u0957808.png" /> is also called unramified. This definition is compatible with the preceding one, because by the fundamental theorem of local [[Class field theory|class field theory]] there is for every Abelian extension of local fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u0957809.png" /> a canonical reciprocity homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578010.png" /> that enables one to identify the set of characters of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578011.png" /> with a certain subgroup of the character group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578012.png" />.
+
<!--
 +
u0957801.png
 +
$#A+1 = 30 n = 0
 +
$#C+1 = 30 : ~/encyclopedia/old_files/data/U095/U.0905780 Unramified character
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
For a Galois extension of global fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578013.png" /> a character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578014.png" /> of the Galois group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578015.png" /> is said to be unramified at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578016.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578017.png" /> if it remains unramified in the above sense under restriction to the decomposition subgroup of any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578018.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578019.png" /> lying over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578020.png" />. Similarly, a character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578021.png" /> of the idèle class group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578022.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578023.png" /> is called unramified at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578024.png" /> if its restriction to the subgroup of units of the completion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578025.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578026.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578027.png" /> is trivial, where the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578028.png" /> is imbedded in the standard way in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578029.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
From global class field theory it follows that these two definitions of being unramified at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095780/u09578030.png" /> are compatible, as in the local case.
+
A character (cf. [[Character of a group|Character of a group]]) of the [[Galois group|Galois group]]  $  G ( K / k ) $
 +
of a Galois extension of local fields  $  K / k $
 +
that is trivial on the inertia subgroup. Any unramified character can be regarded as a character of the Galois group of the extension  $  K _ { \mathop{\rm unr}  } / k $,
 +
where  $  K _ { \mathop{\rm unr}  } $
 +
is the maximal unramified subfield of the extension  $  K / k $.
 +
The unramified characters form a subgroup of the group of all characters. A character of the multiplicative group  $  k  ^ {*} $
 +
of a local field  $  k $
 +
that is trivial on the group of units of  $  k $
 +
is also called unramified. This definition is compatible with the preceding one, because by the fundamental theorem of local [[Class field theory|class field theory]] there is for every Abelian extension of local fields  $  K / k $
 +
a canonical reciprocity homomorphism  $  \theta :  k  ^ {*} \rightarrow G ( K / k ) $
 +
that enables one to identify the set of characters of the group  $  G ( K / k ) $
 +
with a certain subgroup of the character group of  $  k  ^ {*} $.
 +
 
 +
For a Galois extension of global fields  $  K / k $
 +
a character  $  \chi $
 +
of the Galois group  $  G ( K / k ) $
 +
is said to be unramified at a point  $  \mathfrak Y $
 +
of  $  k $
 +
if it remains unramified in the above sense under restriction to the decomposition subgroup of any point  $  \mathfrak P $
 +
of  $  K $
 +
lying over  $  \mathfrak Y $.
 +
Similarly, a character  $  \chi $
 +
of the idèle class group  $  C ( k) $
 +
of  $  k $
 +
is called unramified at  $  \mathfrak Y $
 +
if its restriction to the subgroup of units of the completion  $  k _ {\mathfrak Y }  $
 +
of  $  k $
 +
relative to  $  \mathfrak Y $
 +
is trivial, where the group  $  k _ {\mathfrak Y }  ^ {*} $
 +
is imbedded in the standard way in  $  C ( k) $.
 +
 
 +
From global class field theory it follows that these two definitions of being unramified at a point $  \mathfrak Y $
 +
are compatible, as in the local case.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Weil,  "Basic number theory" , Springer  (1974)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Weil,  "Basic number theory" , Springer  (1974)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
See [[Ramified prime ideal|Ramified prime ideal]] and [[Inertial prime number|Inertial prime number]] for the notion of inertia subgroup.
 
See [[Ramified prime ideal|Ramified prime ideal]] and [[Inertial prime number|Inertial prime number]] for the notion of inertia subgroup.

Latest revision as of 08:27, 6 June 2020


A character (cf. Character of a group) of the Galois group $ G ( K / k ) $ of a Galois extension of local fields $ K / k $ that is trivial on the inertia subgroup. Any unramified character can be regarded as a character of the Galois group of the extension $ K _ { \mathop{\rm unr} } / k $, where $ K _ { \mathop{\rm unr} } $ is the maximal unramified subfield of the extension $ K / k $. The unramified characters form a subgroup of the group of all characters. A character of the multiplicative group $ k ^ {*} $ of a local field $ k $ that is trivial on the group of units of $ k $ is also called unramified. This definition is compatible with the preceding one, because by the fundamental theorem of local class field theory there is for every Abelian extension of local fields $ K / k $ a canonical reciprocity homomorphism $ \theta : k ^ {*} \rightarrow G ( K / k ) $ that enables one to identify the set of characters of the group $ G ( K / k ) $ with a certain subgroup of the character group of $ k ^ {*} $.

For a Galois extension of global fields $ K / k $ a character $ \chi $ of the Galois group $ G ( K / k ) $ is said to be unramified at a point $ \mathfrak Y $ of $ k $ if it remains unramified in the above sense under restriction to the decomposition subgroup of any point $ \mathfrak P $ of $ K $ lying over $ \mathfrak Y $. Similarly, a character $ \chi $ of the idèle class group $ C ( k) $ of $ k $ is called unramified at $ \mathfrak Y $ if its restriction to the subgroup of units of the completion $ k _ {\mathfrak Y } $ of $ k $ relative to $ \mathfrak Y $ is trivial, where the group $ k _ {\mathfrak Y } ^ {*} $ is imbedded in the standard way in $ C ( k) $.

From global class field theory it follows that these two definitions of being unramified at a point $ \mathfrak Y $ are compatible, as in the local case.

References

[1] A. Weil, "Basic number theory" , Springer (1974)

Comments

See Ramified prime ideal and Inertial prime number for the notion of inertia subgroup.

How to Cite This Entry:
Unramified character. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Unramified_character&oldid=11267
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article