Namespaces
Variants
Actions

Difference between revisions of "Lie transformation group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A smooth action of a connected [[Lie group|Lie group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l0587701.png" /> on a smooth [[Manifold|manifold]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l0587702.png" />, that is, a smooth mapping (of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l0587703.png" />) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l0587704.png" /> such that
+
<!--
 +
l0587701.png
 +
$#A+1 = 112 n = 0
 +
$#C+1 = 112 : ~/encyclopedia/old_files/data/L058/L.0508770 Lie transformation group
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
I) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l0587705.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l0587706.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l0587707.png" />;
+
{{TEX|auto}}
 +
{{TEX|done}}
  
II) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l0587708.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l0587709.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877010.png" /> is the identity of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877011.png" />).
+
A smooth action of a connected [[Lie group|Lie group]]  $  G $
 +
on a smooth [[Manifold|manifold]]  $  M $,
 +
that is, a smooth mapping (of class  $  C  ^  \infty  $)
 +
$  A : G \times M \rightarrow M $
 +
such that
  
An action <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877012.png" /> that also satisfies the condition
+
I)  $  A ( g  ^  \prime  g  ^ {\prime\prime} , m ) = A ( g  ^  \prime  , A ( g  ^ {\prime\prime} , m ) ) $
 +
for all  $  g  ^  \prime  , g  ^ {\prime\prime} \in G $,
 +
$  m \in G $;
  
III) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877013.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877014.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877015.png" />, is said to be effective.
+
II)  $  A ( e , m ) = m $
 +
for all $  m \in M $(
 +
$  e $
 +
is the identity of the group  $  G $).
  
Examples of Lie transformation groups. Any smooth linear representation of a Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877016.png" /> in a finite-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877017.png" />; the action of a Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877018.png" /> on itself by means of left or right translations, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877019.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877020.png" />, respectively <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877021.png" />; the action of a Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877022.png" /> on itself by means of inner automorphisms, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877023.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877024.png" />; and a [[One-parameter transformation group|one-parameter transformation group]], that is, the smooth action of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877025.png" /> on a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877026.png" />.
+
An action $  A $
 +
that also satisfies the condition
  
Together with global Lie transformation groups defined above one also considers local Lie transformation groups, which are the main topic of the classical theory of Lie groups [[#References|[1]]]. Instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877027.png" /> one considers a local Lie group (cf. [[Lie group, local|Lie group, local]]), that is, a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877028.png" /> of the identity in some Lie group, and instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877029.png" /> an open subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877030.png" />.
+
III) if  $  A ( g , m ) = m $
 +
for all  $  m \in M $,  
 +
then  $  g = e $,
 +
is said to be effective.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877031.png" /> is a Lie transformation group on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877032.png" />, then by choosing a suitable neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877033.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877034.png" /> and an open subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877035.png" /> one obtains a local Lie transformation group. The reverse step, from a local Lie transformation group to a global one (globalization) is not always possible. However, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877036.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877037.png" /> is sufficiently small, then globalization is possible (see [[#References|[2]]]).
+
Examples of Lie transformation groups. Any smooth linear representation of a Lie group  $  G $
 +
in a finite-dimensional vector space  $  M $;
 +
the action of a Lie group $  G $
 +
on itself by means of left or right translations,  $  A ( g , m ) = gm $
 +
or  $  A ( g , m ) = m g  ^ {-} 1 $,
 +
respectively  $  ( g , m \in G ) $;
 +
the action of a Lie group $  G $
 +
on itself by means of inner automorphisms, $  A ( g , m ) = gmg  ^ {-} 1 $
 +
$  ( g , m \in G ) $;
 +
and a [[One-parameter transformation group|one-parameter transformation group]], that is, the smooth action of the group  $  \mathbf R $
 +
on a manifold  $  M $.
  
One sometimes considers Lie transformation groups of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877039.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877040.png" /> (analytic), that is, it is assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877041.png" /> belongs to the corresponding class. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877042.png" /> is continuous, then for it to belong to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877043.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877044.png" /> it is sufficient that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877045.png" /> the transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877046.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877047.png" /> should belong to this class (see [[#References|[3]]]). In particular, the specification of a Lie transformation group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877048.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877049.png" /> is equivalent to the specification of a continuous homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877050.png" /> into the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877051.png" /> of diffeomorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877052.png" />, endowed with the natural topology.
+
Together with global Lie transformation groups defined above one also considers local Lie transformation groups, which are the main topic of the classical theory of Lie groups [[#References|[1]]]. Instead of $  G $
 +
one considers a local Lie group (cf. [[Lie group, local|Lie group, local]]), that is, a neighbourhood  $  U $
 +
of the identity in some Lie group, and instead of $  M $
 +
an open subset  $  W \subset  \mathbf R  ^ {n} $.
  
To any Lie transformation group corresponds a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877053.png" /> of the [[Lie algebra|Lie algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877054.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877055.png" /> into the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877056.png" /> of smooth vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877057.png" />, which sets up a correspondence between an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877058.png" /> and the velocity field of the one-parameter transformation group
+
If  $  G $
 +
is a Lie transformation group on  $  M $,
 +
then by choosing a suitable neighbourhood  $  U \ni e $
 +
in  $  G $
 +
and an open subset  $  W \subset  M $
 +
one obtains a local Lie transformation group. The reverse step, from a local Lie transformation group to a global one (globalization) is not always possible. However, if  $  \mathop{\rm dim}  M \leq  4 $
 +
and if  $  W $
 +
is sufficiently small, then globalization is possible (see [[#References|[2]]]).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877059.png" /></td> </tr></table>
+
One sometimes considers Lie transformation groups of class $  C  ^ {k} $,
 +
$  1 \leq  k \leq  \infty $,
 +
or  $  C  ^ {a} $(
 +
analytic), that is, it is assumed that  $  A $
 +
belongs to the corresponding class. If  $  A $
 +
is continuous, then for it to belong to  $  C  ^ {k} $
 +
or  $  C  ^ {a} $
 +
it is sufficient that for any  $  g \in G $
 +
the transformation  $  A _ {g} : m \rightarrow A ( g , m) $
 +
of  $  M $
 +
should belong to this class (see [[#References|[3]]]). In particular, the specification of a Lie transformation group  $  G $
 +
on  $  M $
 +
is equivalent to the specification of a continuous homomorphism  $  G \rightarrow  \mathop{\rm Diff}  M $
 +
into the group  $  \mathop{\rm Diff}  M $
 +
of diffeomorphisms of  $  M $,
 +
endowed with the natural topology.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877060.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877061.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877062.png" /> is the [[Exponential mapping|exponential mapping]] (see [[#References|[5]]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877063.png" /> is effective, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877064.png" /> is injective. For a connected group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877065.png" /> the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877066.png" /> completely determines the Lie transformation group. Conversely, to any homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877067.png" /> corresponds a local Lie transformation group [[#References|[6]]]. If all vector fields of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877068.png" /> are complete (that is, their integral curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877069.png" /> are defined for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877070.png" />), then there is a global Lie transformation group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877071.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877072.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877073.png" />. It is sufficient to require that as a Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877074.png" /> is generated by complete vector fields; the completeness condition is automatically satisfied if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877075.png" /> is compact [[#References|[4]]].
+
To any Lie transformation group corresponds a homomorphism $  A _ {*} : \mathfrak g \rightarrow \Phi ( M) $
 +
of the [[Lie algebra|Lie algebra]] $  \mathfrak g $
 +
of $  G $
 +
into the Lie algebra  $  \Phi ( M) $
 +
of smooth vector fields on  $  M $,  
 +
which sets up a correspondence between an element  $  X \in \mathfrak g $
 +
and the velocity field of the one-parameter transformation group
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877076.png" /> is a Lie transformation group of a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877077.png" />, then the stationary subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877078.png" /> for any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877079.png" /> is a closed Lie subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877080.png" />; it is also called the stabilizer, or isotropy subgroup, of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877081.png" />. The corresponding Lie subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877082.png" /> consists of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877083.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877084.png" />. The subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877085.png" /> depends continuously on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877086.png" /> in the natural topology on the set of all subalgebras of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877087.png" /> [[#References|[7]]]. The orbit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877088.png" /> of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877089.png" /> is an immersed submanifold of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877090.png" /> diffeomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877091.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877092.png" /> is compact, then all orbits are compact imbedded submanifolds. Examples of non-imbedded orbits are given by the action of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877093.png" /> on the torus
+
$$
 +
( t , m)  \rightarrow  A (  \mathop{\rm exp}  tX , m ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877094.png" /></td> </tr></table>
+
where  $  t \in \mathbf R $,
 +
$  m \in M $
 +
and  $  \mathop{\rm exp} :  \mathfrak g \rightarrow G $
 +
is the [[Exponential mapping|exponential mapping]] (see [[#References|[5]]]). If  $  G $
 +
is effective, then  $  A _ {*} $
 +
is injective. For a connected group  $  G $
 +
the homomorphism  $  A _ {*} $
 +
completely determines the Lie transformation group. Conversely, to any homomorphism  $  \beta :  \mathfrak g \rightarrow \Phi ( M) $
 +
corresponds a local Lie transformation group [[#References|[6]]]. If all vector fields of  $  \beta ( \mathfrak g ) $
 +
are complete (that is, their integral curves  $  x ( t) $
 +
are defined for all  $  t $),
 +
then there is a global Lie transformation group  $  G $
 +
on  $  M $
 +
for which  $  \mathop{\rm Im}  A _ {*} = \mathfrak g $.
 +
It is sufficient to require that as a Lie algebra  $  \beta ( \mathfrak g ) $
 +
is generated by complete vector fields; the completeness condition is automatically satisfied if  $  M $
 +
is compact [[#References|[4]]].
 +
 
 +
If  $  G $
 +
is a Lie transformation group of a manifold  $  M $,
 +
then the stationary subgroup  $  G _ {m} = \{ {g \in G } : {A ( g , m ) = m } \} $
 +
for any point  $  m \in M $
 +
is a closed Lie subgroup of  $  G $;  
 +
it is also called the stabilizer, or isotropy subgroup, of the point  $  m $.
 +
The corresponding Lie subalgebra  $  \mathfrak g _ {m} \subset  \mathfrak g $
 +
consists of all  $  X \in \mathfrak g $
 +
such that  $  A _ {*} ( X) _ {m} = 0 $.
 +
The subalgebra  $  \mathfrak g _ {m} $
 +
depends continuously on  $  m $
 +
in the natural topology on the set of all subalgebras of  $  \mathfrak g $[[#References|[7]]]. The orbit  $  G ( m) = \{ {A ( g , m ) } : {g \in G } \} $
 +
of the point  $  m $
 +
is an immersed submanifold of  $  M $
 +
diffeomorphic to  $  G / G _ {m} $.  
 +
If  $  G $
 +
is compact, then all orbits are compact imbedded submanifolds. Examples of non-imbedded orbits are given by the action of the group  $  \mathbf R $
 +
on the torus
 +
 
 +
$$
 +
T  ^ {2}  =  \{ {( z _ {1} , z _ {2} ) } : {z _ {i} \in \mathbf C , | z _ {i} | = 1 , i = 1, 2 } \}
 +
$$
  
 
given by the formula
 
given by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877095.png" /></td> </tr></table>
+
$$
 +
A ( t , ( z _ {1} , z _ {2} ) )  = ( e  ^ {it} z _ {1} , e ^ {i
 +
\alpha t } z _ {2} ) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877096.png" /> is irrational.
+
where $  \alpha \in \mathbf R $
 +
is irrational.
  
Two Lie transformation groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877097.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877098.png" />, are said to be similar if there is a diffeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877099.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l058770100.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l058770101.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l058770102.png" />. An important problem in the theory of transformation groups is the problem of classifying Lie transformation groups up to similarity. At present (1989) it has been solved only in certain special cases. S. Lie [[#References|[1]]] gave a classification of local Lie transformation groups in domains of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l058770103.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l058770104.png" /> up to local similarity. A partial classification has been carried out for Lie transformation groups on three-dimensional manifolds. Compact Lie transformation groups have also been well studied. For transitive Lie transformation groups see [[Homogeneous space|Homogeneous space]].
+
Two Lie transformation groups $  A _ {i} : G \times M _ {i} \rightarrow M _ {i} $,  
 +
$  i = 1 , 2 $,  
 +
are said to be similar if there is a diffeomorphism $  f : M _ {1} \rightarrow M _ {2} $
 +
such that $  A _ {1} ( g , m ) = A _ {2} ( g , f ( m) ) $,  
 +
$  g \in G $,  
 +
$  m \in M _ {1} $.  
 +
An important problem in the theory of transformation groups is the problem of classifying Lie transformation groups up to similarity. At present (1989) it has been solved only in certain special cases. S. Lie [[#References|[1]]] gave a classification of local Lie transformation groups in domains of $  \mathbf R  ^ {1} $
 +
and $  \mathbf R  ^ {2} $
 +
up to local similarity. A partial classification has been carried out for Lie transformation groups on three-dimensional manifolds. Compact Lie transformation groups have also been well studied. For transitive Lie transformation groups see [[Homogeneous space|Homogeneous space]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Lie,  "Theorie der Transformationsgruppen"  ''Math. Ann.'' , '''16'''  (1880)  pp. 441–528</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G. Mostow,  "The extensibility of local Lie groups of transformations and groups on surfaces"  ''Ann. of Math. (2)'' , '''52'''  (1950)  pp. 606–636</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. Bochner,  D. Montgomery,  "Groups of differentiable and real or complex analytic transformations"  ''Ann. of Math. (2)'' , '''46'''  (1945)  pp. 685–694</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R. Palais,  "A global formulation of the Lie theory of transformation groups"  ''Mem. Amer. Math. Soc.'' , '''22'''  (1957)  pp. 1–123</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  R. Sulanke,  P. Wintgen,  "Differentialgeometrie und Faserbündel" , Birkhäuser  (1972)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  L.S. Pontryagin,  "Topological groups" , Princeton Univ. Press  (1958)  (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  R. Richardson,  "On the variation of isotropy subalgebras" , ''Proc. Conf. Transformation Groups, New Orleans, 1967'' , Springer  (1968)  pp. 429–440</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  N.G. Chebotarev,  "The theory of Lie groups" , Moscow-Leningrad  (1940)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Lie,  "Theorie der Transformationsgruppen"  ''Math. Ann.'' , '''16'''  (1880)  pp. 441–528</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G. Mostow,  "The extensibility of local Lie groups of transformations and groups on surfaces"  ''Ann. of Math. (2)'' , '''52'''  (1950)  pp. 606–636</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. Bochner,  D. Montgomery,  "Groups of differentiable and real or complex analytic transformations"  ''Ann. of Math. (2)'' , '''46'''  (1945)  pp. 685–694</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R. Palais,  "A global formulation of the Lie theory of transformation groups"  ''Mem. Amer. Math. Soc.'' , '''22'''  (1957)  pp. 1–123</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  R. Sulanke,  P. Wintgen,  "Differentialgeometrie und Faserbündel" , Birkhäuser  (1972)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  L.S. Pontryagin,  "Topological groups" , Princeton Univ. Press  (1958)  (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  R. Richardson,  "On the variation of isotropy subalgebras" , ''Proc. Conf. Transformation Groups, New Orleans, 1967'' , Springer  (1968)  pp. 429–440</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  N.G. Chebotarev,  "The theory of Lie groups" , Moscow-Leningrad  (1940)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l058770105.png" /> is a locally compact group which acts continuously and effectively on a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l058770106.png" /> manifold by means of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l058770107.png" /> transformations, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l058770108.png" /> is a Lie group and the action <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l058770109.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l058770110.png" />.
+
If $  G $
 +
is a locally compact group which acts continuously and effectively on a $  C  ^ {k} $
 +
manifold by means of $  C  ^ {k} $
 +
transformations, then $  G $
 +
is a Lie group and the action $  G \times M \rightarrow M $
 +
is $  C  ^ {k} $.
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l058770111.png" /> this theorem is due to S. Bochner and D. Montgomery, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l058770112.png" /> to M. Kuranishi, see [[#References|[a1]]], Chapt. V.
+
For $  k \geq  2 $
 +
this theorem is due to S. Bochner and D. Montgomery, for $  k = 1 $
 +
to M. Kuranishi, see [[#References|[a1]]], Chapt. V.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D. Montgomery,  L. Zippin,  "Topological transformation groups" , Interscience  (1964)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D. Montgomery,  L. Zippin,  "Topological transformation groups" , Interscience  (1964)</TD></TR></table>

Latest revision as of 22:16, 5 June 2020


A smooth action of a connected Lie group $ G $ on a smooth manifold $ M $, that is, a smooth mapping (of class $ C ^ \infty $) $ A : G \times M \rightarrow M $ such that

I) $ A ( g ^ \prime g ^ {\prime\prime} , m ) = A ( g ^ \prime , A ( g ^ {\prime\prime} , m ) ) $ for all $ g ^ \prime , g ^ {\prime\prime} \in G $, $ m \in G $;

II) $ A ( e , m ) = m $ for all $ m \in M $( $ e $ is the identity of the group $ G $).

An action $ A $ that also satisfies the condition

III) if $ A ( g , m ) = m $ for all $ m \in M $, then $ g = e $, is said to be effective.

Examples of Lie transformation groups. Any smooth linear representation of a Lie group $ G $ in a finite-dimensional vector space $ M $; the action of a Lie group $ G $ on itself by means of left or right translations, $ A ( g , m ) = gm $ or $ A ( g , m ) = m g ^ {-} 1 $, respectively $ ( g , m \in G ) $; the action of a Lie group $ G $ on itself by means of inner automorphisms, $ A ( g , m ) = gmg ^ {-} 1 $ $ ( g , m \in G ) $; and a one-parameter transformation group, that is, the smooth action of the group $ \mathbf R $ on a manifold $ M $.

Together with global Lie transformation groups defined above one also considers local Lie transformation groups, which are the main topic of the classical theory of Lie groups [1]. Instead of $ G $ one considers a local Lie group (cf. Lie group, local), that is, a neighbourhood $ U $ of the identity in some Lie group, and instead of $ M $ an open subset $ W \subset \mathbf R ^ {n} $.

If $ G $ is a Lie transformation group on $ M $, then by choosing a suitable neighbourhood $ U \ni e $ in $ G $ and an open subset $ W \subset M $ one obtains a local Lie transformation group. The reverse step, from a local Lie transformation group to a global one (globalization) is not always possible. However, if $ \mathop{\rm dim} M \leq 4 $ and if $ W $ is sufficiently small, then globalization is possible (see [2]).

One sometimes considers Lie transformation groups of class $ C ^ {k} $, $ 1 \leq k \leq \infty $, or $ C ^ {a} $( analytic), that is, it is assumed that $ A $ belongs to the corresponding class. If $ A $ is continuous, then for it to belong to $ C ^ {k} $ or $ C ^ {a} $ it is sufficient that for any $ g \in G $ the transformation $ A _ {g} : m \rightarrow A ( g , m) $ of $ M $ should belong to this class (see [3]). In particular, the specification of a Lie transformation group $ G $ on $ M $ is equivalent to the specification of a continuous homomorphism $ G \rightarrow \mathop{\rm Diff} M $ into the group $ \mathop{\rm Diff} M $ of diffeomorphisms of $ M $, endowed with the natural topology.

To any Lie transformation group corresponds a homomorphism $ A _ {*} : \mathfrak g \rightarrow \Phi ( M) $ of the Lie algebra $ \mathfrak g $ of $ G $ into the Lie algebra $ \Phi ( M) $ of smooth vector fields on $ M $, which sets up a correspondence between an element $ X \in \mathfrak g $ and the velocity field of the one-parameter transformation group

$$ ( t , m) \rightarrow A ( \mathop{\rm exp} tX , m ) , $$

where $ t \in \mathbf R $, $ m \in M $ and $ \mathop{\rm exp} : \mathfrak g \rightarrow G $ is the exponential mapping (see [5]). If $ G $ is effective, then $ A _ {*} $ is injective. For a connected group $ G $ the homomorphism $ A _ {*} $ completely determines the Lie transformation group. Conversely, to any homomorphism $ \beta : \mathfrak g \rightarrow \Phi ( M) $ corresponds a local Lie transformation group [6]. If all vector fields of $ \beta ( \mathfrak g ) $ are complete (that is, their integral curves $ x ( t) $ are defined for all $ t $), then there is a global Lie transformation group $ G $ on $ M $ for which $ \mathop{\rm Im} A _ {*} = \mathfrak g $. It is sufficient to require that as a Lie algebra $ \beta ( \mathfrak g ) $ is generated by complete vector fields; the completeness condition is automatically satisfied if $ M $ is compact [4].

If $ G $ is a Lie transformation group of a manifold $ M $, then the stationary subgroup $ G _ {m} = \{ {g \in G } : {A ( g , m ) = m } \} $ for any point $ m \in M $ is a closed Lie subgroup of $ G $; it is also called the stabilizer, or isotropy subgroup, of the point $ m $. The corresponding Lie subalgebra $ \mathfrak g _ {m} \subset \mathfrak g $ consists of all $ X \in \mathfrak g $ such that $ A _ {*} ( X) _ {m} = 0 $. The subalgebra $ \mathfrak g _ {m} $ depends continuously on $ m $ in the natural topology on the set of all subalgebras of $ \mathfrak g $[7]. The orbit $ G ( m) = \{ {A ( g , m ) } : {g \in G } \} $ of the point $ m $ is an immersed submanifold of $ M $ diffeomorphic to $ G / G _ {m} $. If $ G $ is compact, then all orbits are compact imbedded submanifolds. Examples of non-imbedded orbits are given by the action of the group $ \mathbf R $ on the torus

$$ T ^ {2} = \{ {( z _ {1} , z _ {2} ) } : {z _ {i} \in \mathbf C , | z _ {i} | = 1 , i = 1, 2 } \} $$

given by the formula

$$ A ( t , ( z _ {1} , z _ {2} ) ) = ( e ^ {it} z _ {1} , e ^ {i \alpha t } z _ {2} ) , $$

where $ \alpha \in \mathbf R $ is irrational.

Two Lie transformation groups $ A _ {i} : G \times M _ {i} \rightarrow M _ {i} $, $ i = 1 , 2 $, are said to be similar if there is a diffeomorphism $ f : M _ {1} \rightarrow M _ {2} $ such that $ A _ {1} ( g , m ) = A _ {2} ( g , f ( m) ) $, $ g \in G $, $ m \in M _ {1} $. An important problem in the theory of transformation groups is the problem of classifying Lie transformation groups up to similarity. At present (1989) it has been solved only in certain special cases. S. Lie [1] gave a classification of local Lie transformation groups in domains of $ \mathbf R ^ {1} $ and $ \mathbf R ^ {2} $ up to local similarity. A partial classification has been carried out for Lie transformation groups on three-dimensional manifolds. Compact Lie transformation groups have also been well studied. For transitive Lie transformation groups see Homogeneous space.

References

[1] S. Lie, "Theorie der Transformationsgruppen" Math. Ann. , 16 (1880) pp. 441–528
[2] G. Mostow, "The extensibility of local Lie groups of transformations and groups on surfaces" Ann. of Math. (2) , 52 (1950) pp. 606–636
[3] S. Bochner, D. Montgomery, "Groups of differentiable and real or complex analytic transformations" Ann. of Math. (2) , 46 (1945) pp. 685–694
[4] R. Palais, "A global formulation of the Lie theory of transformation groups" Mem. Amer. Math. Soc. , 22 (1957) pp. 1–123
[5] R. Sulanke, P. Wintgen, "Differentialgeometrie und Faserbündel" , Birkhäuser (1972)
[6] L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian)
[7] R. Richardson, "On the variation of isotropy subalgebras" , Proc. Conf. Transformation Groups, New Orleans, 1967 , Springer (1968) pp. 429–440
[8] N.G. Chebotarev, "The theory of Lie groups" , Moscow-Leningrad (1940) (In Russian)

Comments

If $ G $ is a locally compact group which acts continuously and effectively on a $ C ^ {k} $ manifold by means of $ C ^ {k} $ transformations, then $ G $ is a Lie group and the action $ G \times M \rightarrow M $ is $ C ^ {k} $.

For $ k \geq 2 $ this theorem is due to S. Bochner and D. Montgomery, for $ k = 1 $ to M. Kuranishi, see [a1], Chapt. V.

References

[a1] D. Montgomery, L. Zippin, "Topological transformation groups" , Interscience (1964)
How to Cite This Entry:
Lie transformation group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lie_transformation_group&oldid=11249
This article was adapted from an original article by V.V. Gorbatsevich (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article