Difference between revisions of "Ro-group"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | r1101102.png | ||
+ | $#A+1 = 60 n = 0 | ||
+ | $#C+1 = 60 : ~/encyclopedia/old_files/data/R110/R.1100110 \BMI ro\EMI\AAhgroup, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''right-ordered group'' | ''right-ordered group'' | ||
− | A [[Group|group]] | + | A [[Group|group]] $ G $ |
+ | endowed with a total order $ \cle $ | ||
+ | such that for all $ x,y,z \in G $, | ||
− | + | $$ | |
+ | x \cle y \Rightarrow xz \cle yz. | ||
+ | $$ | ||
− | If | + | If $ P = P ( G ) = \{ {x \in G } : {x \cge e } \} $ |
+ | is the positive cone of the $ ro $- | ||
+ | group $ G $( | ||
+ | cf. also [[L-group| $ l $- | ||
+ | group]]), then: | ||
− | 1) | + | 1) $ P \cdot P \subseteq P $; |
− | 2) | + | 2) $ P \cap P ^ {- 1 } = \{ e \} $; |
− | 3) | + | 3) $ P \cup P ^ {- 1 } = G $. |
+ | If, in a group $ G $, | ||
+ | there is a subset $ P $ | ||
+ | satisfying 1)–3), then $ G $ | ||
+ | can given the structure of a $ ro $- | ||
+ | group with positive cone $ P $ | ||
+ | by a setting $ x \cle y $ | ||
+ | if and only if $ yx ^ {- 1 } \in P $. | ||
+ | The positive cone of a $ ro $- | ||
+ | group is isolated, i.e., $ x ^ {n} \in P \Rightarrow x \in P $. | ||
− | The group of order automorphisms | + | The group of order automorphisms $ { \mathop{\rm Aut} } ( X ) $ |
+ | of a totally ordered set $ \{ X; \cle \} $ | ||
+ | can be turned into a $ ro $- | ||
+ | group by defining the following relation $ \cle $ | ||
+ | on it. Let $ \prec $ | ||
+ | be any well ordering on $ X $: | ||
+ | $ x _ {1} \prec \dots \prec x _ \alpha \prec \dots $. | ||
+ | Let $ \varphi \in { \mathop{\rm Aut} } ( X ) $ | ||
+ | and let $ x _ \alpha $ | ||
+ | be the first (with respect to $ \prec $) | ||
+ | element in $ \{ {x \in X } : {x \varphi \neq x } \} $. | ||
+ | Then $ A ( X ) $ | ||
+ | is a $ ro $- | ||
+ | group with respect to the order with positive cone | ||
− | + | $$ | |
+ | P \subset A ( X ) = \left \{ {\varphi \in { \mathop{\rm Aut} } ( X ) } : {x _ \alpha \varphi \cge x _ \alpha } \right \} . | ||
+ | $$ | ||
− | Any | + | Any $ ro $- |
+ | group is isomorphic to a subgroup of the $ ro $- | ||
+ | group $ { \mathop{\rm Aut} } ( X ) $ | ||
+ | for some totally ordered set $ X $. | ||
+ | There exist simple $ ro $- | ||
+ | groups whose finitely generated subgroups coincide with the commutator subgroup. The class of all groups that can be turned into a $ ro $- | ||
+ | group is a [[Quasi-variety|quasi-variety]], i.e., it is defined by a system of formulas of the form: | ||
− | + | $$ | |
+ | \forall x _ {1} \dots x _ {n} : | ||
+ | $$ | ||
− | + | $$ | |
+ | ( w _ {1} ( x _ {1} \dots x _ {n} ) = e \& \dots \& w _ {m} ( x _ {1} \dots x _ {n} ) = e ) \Rightarrow | ||
+ | $$ | ||
− | + | $$ | |
+ | \Rightarrow | ||
+ | w ( x _ {1} \dots x _ {n} ) = e, | ||
+ | $$ | ||
− | where | + | where $ w $, |
+ | $ w _ {i} $ | ||
+ | are the group-theoretical words. This class is closed under formation of subgroups, Cartesian and free products, and extension, and is locally closed. | ||
− | The system | + | The system $ {\mathcal C} ( G ) $ |
+ | of convex subgroups of a $ ro $- | ||
+ | group $ G $ | ||
+ | is a complete chain. It can be non-solvable, non-infra-invariant and non-normal. There exist non-Abelian $ ro $- | ||
+ | groups without proper convex subgroups. | ||
− | A | + | A $ ro $- |
+ | group $ G $ | ||
+ | is Archimedean if for any positive elements $ x,y \in G $ | ||
+ | there exists a positive integer $ n $ | ||
+ | such that $ x ^ {n} > y $. | ||
+ | An Archimedean $ ro $- | ||
+ | group is order-isomorphic to some subgroup of the additive group $ \mathbf R $ | ||
+ | of real numbers with the natural order. The class of Conradian $ ro $- | ||
+ | groups, i.e., $ ro $- | ||
+ | groups for which the system $ {\mathcal C} ( G ) $ | ||
+ | is subnormal and the quotient groups of the jumps of $ {\mathcal C} ( G ) $ | ||
+ | are Archimedean, is well investigated. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.M. Kopytov, N.Ya. Medvedev, "The theory of lattice-ordered groups" , Kluwer Acad. Publ. (1994) (In Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.T.B. Mura, A.H. Rhemtulla, "Orderable groups" , M. Dekker (1977)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.M. Kopytov, N.Ya. Medvedev, "The theory of lattice-ordered groups" , Kluwer Acad. Publ. (1994) (In Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.T.B. Mura, A.H. Rhemtulla, "Orderable groups" , M. Dekker (1977)</TD></TR></table> |
Revision as of 08:11, 6 June 2020
right-ordered group
A group $ G $ endowed with a total order $ \cle $ such that for all $ x,y,z \in G $,
$$ x \cle y \Rightarrow xz \cle yz. $$
If $ P = P ( G ) = \{ {x \in G } : {x \cge e } \} $ is the positive cone of the $ ro $- group $ G $( cf. also $ l $- group), then:
1) $ P \cdot P \subseteq P $;
2) $ P \cap P ^ {- 1 } = \{ e \} $;
3) $ P \cup P ^ {- 1 } = G $. If, in a group $ G $, there is a subset $ P $ satisfying 1)–3), then $ G $ can given the structure of a $ ro $- group with positive cone $ P $ by a setting $ x \cle y $ if and only if $ yx ^ {- 1 } \in P $. The positive cone of a $ ro $- group is isolated, i.e., $ x ^ {n} \in P \Rightarrow x \in P $.
The group of order automorphisms $ { \mathop{\rm Aut} } ( X ) $ of a totally ordered set $ \{ X; \cle \} $ can be turned into a $ ro $- group by defining the following relation $ \cle $ on it. Let $ \prec $ be any well ordering on $ X $: $ x _ {1} \prec \dots \prec x _ \alpha \prec \dots $. Let $ \varphi \in { \mathop{\rm Aut} } ( X ) $ and let $ x _ \alpha $ be the first (with respect to $ \prec $) element in $ \{ {x \in X } : {x \varphi \neq x } \} $. Then $ A ( X ) $ is a $ ro $- group with respect to the order with positive cone
$$ P \subset A ( X ) = \left \{ {\varphi \in { \mathop{\rm Aut} } ( X ) } : {x _ \alpha \varphi \cge x _ \alpha } \right \} . $$
Any $ ro $- group is isomorphic to a subgroup of the $ ro $- group $ { \mathop{\rm Aut} } ( X ) $ for some totally ordered set $ X $. There exist simple $ ro $- groups whose finitely generated subgroups coincide with the commutator subgroup. The class of all groups that can be turned into a $ ro $- group is a quasi-variety, i.e., it is defined by a system of formulas of the form:
$$ \forall x _ {1} \dots x _ {n} : $$
$$ ( w _ {1} ( x _ {1} \dots x _ {n} ) = e \& \dots \& w _ {m} ( x _ {1} \dots x _ {n} ) = e ) \Rightarrow $$
$$ \Rightarrow w ( x _ {1} \dots x _ {n} ) = e, $$
where $ w $, $ w _ {i} $ are the group-theoretical words. This class is closed under formation of subgroups, Cartesian and free products, and extension, and is locally closed.
The system $ {\mathcal C} ( G ) $ of convex subgroups of a $ ro $- group $ G $ is a complete chain. It can be non-solvable, non-infra-invariant and non-normal. There exist non-Abelian $ ro $- groups without proper convex subgroups.
A $ ro $- group $ G $ is Archimedean if for any positive elements $ x,y \in G $ there exists a positive integer $ n $ such that $ x ^ {n} > y $. An Archimedean $ ro $- group is order-isomorphic to some subgroup of the additive group $ \mathbf R $ of real numbers with the natural order. The class of Conradian $ ro $- groups, i.e., $ ro $- groups for which the system $ {\mathcal C} ( G ) $ is subnormal and the quotient groups of the jumps of $ {\mathcal C} ( G ) $ are Archimedean, is well investigated.
References
[a1] | V.M. Kopytov, N.Ya. Medvedev, "The theory of lattice-ordered groups" , Kluwer Acad. Publ. (1994) (In Russian) |
[a2] | R.T.B. Mura, A.H. Rhemtulla, "Orderable groups" , M. Dekker (1977) |
Ro-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ro-group&oldid=11213