Difference between revisions of "Simplicial object in a category"
Ulf Rehmann (talk | contribs) m (Undo revision 48710 by Ulf Rehmann (talk)) Tag: Undo |
Ulf Rehmann (talk | contribs) m (tex done; typos) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0853801.png | ||
+ | $#A+1 = 77 n = 0 | ||
+ | $#C+1 = 77 : ~/encyclopedia/old_files/data/S085/S.0805380 Simplicial object in a category | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | A contravariant functor | + | {{TEX|auto}} |
+ | {{TEX|done}} | ||
+ | |||
+ | '' $ {\mathcal C} $'' | ||
+ | |||
+ | A contravariant functor $ X: \Delta \rightarrow {\mathcal C} $( | ||
+ | or, equivalently, a covariant functor $ X: \Delta ^ {op} \rightarrow {\mathcal C} $) | ||
+ | from the category $ \Delta $, | ||
+ | whose objects are ordered sets $ [ n] = \{ 0 \dots n \} $, | ||
+ | $ n \geq 0 $, | ||
+ | and whose morphisms are non-decreasing mappings $ \mu : [ n] \rightarrow [ m] $, | ||
+ | into the category $ {\mathcal C} $. | ||
+ | A covariant functor $ X: \Delta \rightarrow {\mathcal C} $( | ||
+ | or, equivalently, a contravariant functor $ X: \Delta ^ {op} \rightarrow {\mathcal C} $) | ||
+ | is called a co-simplicial object in $ {\mathcal C} $. | ||
The morphisms | The morphisms | ||
− | + | $$ | |
+ | \delta _ {i} = \delta _ {i} ^ {n} : [ n - 1] \rightarrow [ n],\ \ | ||
+ | 0 \leq i \leq n, | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \sigma _ {i} = \sigma _ {i} ^ {n} : [ n + 1] \rightarrow [ n],\ 0 \leq i \leq n, | ||
+ | $$ | ||
+ | |||
+ | of $ \Delta $ | ||
+ | given by | ||
+ | |||
+ | $$ | ||
+ | \delta _ {i} ^ {n} ( j) = \ | ||
+ | \left \{ | ||
+ | \begin{array}{ll} | ||
+ | j &\textrm{ if } j < i, \\ | ||
+ | j + 1 &\textrm{ if } j \geq i, \\ | ||
+ | \end{array} | ||
+ | |||
+ | \right .$$ | ||
+ | |||
+ | $$ | ||
+ | \sigma _ {i} ^ {n} ( j) = \left \{ | ||
+ | \begin{array}{ll} | ||
+ | j &\textrm{ if } j \leq i, \\ | ||
+ | j - | ||
+ | 1 &\textrm{ if } j > i, \\ | ||
+ | \end{array} | ||
− | + | \right .$$ | |
− | of | + | generate all the morphisms of $ \Delta $, |
+ | so that a simplicial object $ X $ | ||
+ | is determined by the objects $ X ([ n]) = X _ {n} $, | ||
+ | $ n \geq 0 $( | ||
+ | called the $ n $- | ||
+ | fibres or $ n $- | ||
+ | components of the simplicial object $ X $), | ||
+ | and the morphisms | ||
− | + | $$ | |
+ | d _ {i} = X ( \delta _ {i} ): X _ {n} \rightarrow X _ {n - 1 } \ \ | ||
+ | \textrm{ and } \ \ | ||
+ | s _ {i} = X ( \sigma _ {i} ): X _ {n} \rightarrow X _ {n + 1 } | ||
+ | $$ | ||
− | + | (called boundary operators and degeneracy operators, respectively). In case $ {\mathcal C} $ | |
+ | is a category of structured sets, the elements of $ X _ {n} $ | ||
+ | are usually called the $ n $- | ||
+ | dimensional simplices of $ X $. | ||
+ | The mappings $ \delta _ {i} $ | ||
+ | and $ \sigma _ {i} $ | ||
+ | satisfy the relations | ||
− | + | $$ \tag{* } | |
+ | \left. | ||
+ | \begin{array}{cll} | ||
+ | \delta_{j} \delta_{i} &=& \delta_{i} \delta_{j - 1} \quad\ \ \textrm{ if } i < j, \\ | ||
+ | \sigma_{j} \sigma_{i} &=& \sigma_{i} \sigma_{j + 1} \quad \ \ \textrm{ if } i \leq j;\\ | ||
+ | \sigma_{j} \delta_{i} &=& \left \{ | ||
+ | \begin{array}{ll} | ||
+ | \delta_{i} \sigma_{j - 1 } & \textrm{ if } i < j, \\ | ||
+ | \mathop{\rm id} & \textrm{ if } i = j \textrm{ or } i = j + 1, \\ | ||
+ | \delta_{i - 1}\sigma_{j} & \textrm{ if } i > j + 1; \\ | ||
+ | \end{array} | ||
+ | \right.\\ | ||
+ | \end{array} | ||
+ | \right \} | ||
+ | $$ | ||
− | + | and any relation between these mappings is a consequence of the relations (*). This means that a simplicial object $ X $ | |
+ | can be identified with a system $ \{ X _ {n} , d _ {i} , s _ {i} \} $ | ||
+ | of objects $ X _ {n} $, | ||
+ | $ n \geq 0 $, | ||
+ | of $ {\mathcal C} $ | ||
+ | and morphisms $ d _ {i} : X _ {n} \rightarrow X _ {n - 1 } $ | ||
+ | and $ s _ {i} : X _ {n} \rightarrow X _ {n + 1 } $, | ||
+ | $ 0 \leq i \leq n $, | ||
+ | satisfying the relations | ||
− | + | $$ | |
+ | d _ {i} d _ {j} = d _ {j - 1 } d _ {i} \ \textrm{ if } i < j; | ||
+ | $$ | ||
− | + | $$ | |
+ | s _ {i} s _ {j} = s _ {j + 1 } s _ {i} \ \textrm{ if } i \leq j; | ||
+ | $$ | ||
− | + | $$ | |
+ | d _ {i} s _ {j} = \left \{ | ||
+ | \begin{array}{ll} | ||
+ | s _ {j - 1 | ||
+ | } d _ {i} & \textrm{ if } i < j, \\ | ||
+ | \mathop{\rm id} & \textrm{ if } i = j \ | ||
+ | \textrm{ or } i = j + 1, \\ | ||
+ | s _ {j} d _ {i - 1 } & \textrm{ if } i > j + 1. \\ | ||
+ | \end{array} | ||
− | + | \right .$$ | |
− | + | Similarly, a co-simplicial object $ X $ | |
+ | can be identified with a system $ \{ X _ {n} , d ^ {i} , s ^ {i} \} $ | ||
+ | of objects $ X ^ {n} $, | ||
+ | $ n \geq 0 $( | ||
+ | $ n $- | ||
+ | co-fibres) and morphisms $ d _ {i} : X ^ {n - 1 } \rightarrow X ^ {n} $, | ||
+ | $ 0 \leq i \leq n $( | ||
+ | co-boundary operators), and $ s ^ {i} : X ^ {n + 1 } \rightarrow X ^ {n} $, | ||
+ | $ 0 \leq i \leq n $( | ||
+ | co-degeneracy operators), satisfying the relations (*) (with $ \delta _ {i} = d ^ {i} $, | ||
+ | $ \sigma _ {i} = s ^ {i} $). | ||
− | + | A simplicial mapping $ f: X \rightarrow Y $ | |
+ | between simplicial objects (in the same category $ {\mathcal C} $) | ||
+ | is a transformation (morphism) of functors from $ X: \Delta \rightarrow {\mathcal C} $ | ||
+ | into $ Y: \Delta \rightarrow {\mathcal C} $, | ||
+ | that is, a family of morphisms $ f _ {n} : X _ {n} \rightarrow Y _ {n} $, | ||
+ | $ n \geq 0 $, | ||
+ | of $ {\mathcal C} $ | ||
+ | such that | ||
− | + | $$ | |
+ | d _ {i} f _ {n + 1 } = f _ {n} d _ {i} ,\ \ | ||
+ | 0 \leq i \leq n + 1, | ||
+ | $$ | ||
− | + | $$ | |
+ | s _ {i} f _ {n} = f _ {n + 1 } s _ {i} ,\ 0 \leq i \leq n. | ||
+ | $$ | ||
− | + | The simplicial objects of $ {\mathcal C} $ | |
+ | and their simplicial mappings form a category, denoted by $ \Delta ^ {0} {\mathcal C} $. | ||
− | + | A simplicial homotopy $ h: f \simeq g $ | |
+ | between two simplicial mappings $ f, g: X \rightarrow Y $ | ||
+ | between simplicial objects in a category $ {\mathcal C} $ | ||
+ | is a family of morphisms $ h _ {i} : X _ {n} \rightarrow Y _ {n + 1 } $, | ||
+ | $ 0 \leq i \leq n $, | ||
+ | of $ {\mathcal C} $ | ||
+ | such that | ||
− | + | $$ | |
+ | d _ {0} h _ {0} = f _ {n} ; | ||
+ | $$ | ||
− | + | $$ | |
+ | d _ {n} h _ {n} = g _ {n} ; | ||
+ | $$ | ||
− | + | $$ | |
+ | d _ {i} h _ {j} = \left \{ | ||
+ | \begin{array}{ll} | ||
+ | h _ {j - 1 } d _ {i} &\textrm{ if } i < j, \\ | ||
+ | d _ {j} h _ {j - 1 } &\textrm{ if } i = j > 0, \\ | ||
+ | h _ {j} d _ {i - 1 | ||
+ | } &\textrm{ if } i > j + 1; \\ | ||
+ | \end{array} | ||
− | + | \right .$$ | |
− | + | $$ | |
+ | s _ {i} h _ {j} = \left \{ | ||
+ | \begin{array}{ll} | ||
+ | h _ {j + | ||
+ | 1 } s _ {i} &\textrm{ if } i \leq j, \\ | ||
+ | h _ {j} s _ {i - 1 } | ||
+ | &\textrm{ if } i > j. \\ | ||
+ | \end{array} | ||
− | + | \right .$$ | |
− | On the basis of this definition one can reproduce in essence the whole of ordinary homotopy theory in the category | + | On the basis of this definition one can reproduce in essence the whole of ordinary homotopy theory in the category $ \Delta ^ {0} {\mathcal C} $, |
+ | for any category $ {\mathcal C} $. | ||
+ | In the case of the category of sets or topological spaces, the geometric realization functor (see [[Simplicial set|Simplicial set]]) carries this "simplicial" theory into the usual one. | ||
Examples of simplicial objects are a simplicial set, a simplicial topological space, a simplicial algebraic variety, a simplicial group, a simplicial Abelian group, a simplicial Lie algebra, a simplicial smooth manifold, etc. | Examples of simplicial objects are a simplicial set, a simplicial topological space, a simplicial algebraic variety, a simplicial group, a simplicial Abelian group, a simplicial Lie algebra, a simplicial smooth manifold, etc. | ||
− | Every simplicial Abelian group can be made into a chain complex with boundary operator | + | Every simplicial Abelian group can be made into a chain complex with boundary operator $ d = \sum (- 1) ^ {i} d _ {i} $. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Gabriel, M. Zisman, "Calculus of fractions and homotopy theory" , Springer (1967)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.P. May, "Simplicial objects in algebraic topology" , v. Nostrand (1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K. Lamotke, "Semisimpliziale algebraische Topologie" , Springer (1968)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Gabriel, M. Zisman, "Calculus of fractions and homotopy theory" , Springer (1967)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.P. May, "Simplicial objects in algebraic topology" , v. Nostrand (1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K. Lamotke, "Semisimpliziale algebraische Topologie" , Springer (1968)</TD></TR></table> |
Latest revision as of 21:39, 10 June 2020
$ {\mathcal C} $
A contravariant functor $ X: \Delta \rightarrow {\mathcal C} $( or, equivalently, a covariant functor $ X: \Delta ^ {op} \rightarrow {\mathcal C} $) from the category $ \Delta $, whose objects are ordered sets $ [ n] = \{ 0 \dots n \} $, $ n \geq 0 $, and whose morphisms are non-decreasing mappings $ \mu : [ n] \rightarrow [ m] $, into the category $ {\mathcal C} $. A covariant functor $ X: \Delta \rightarrow {\mathcal C} $( or, equivalently, a contravariant functor $ X: \Delta ^ {op} \rightarrow {\mathcal C} $) is called a co-simplicial object in $ {\mathcal C} $.
The morphisms
$$ \delta _ {i} = \delta _ {i} ^ {n} : [ n - 1] \rightarrow [ n],\ \ 0 \leq i \leq n, $$
$$ \sigma _ {i} = \sigma _ {i} ^ {n} : [ n + 1] \rightarrow [ n],\ 0 \leq i \leq n, $$
of $ \Delta $ given by
$$ \delta _ {i} ^ {n} ( j) = \ \left \{ \begin{array}{ll} j &\textrm{ if } j < i, \\ j + 1 &\textrm{ if } j \geq i, \\ \end{array} \right .$$
$$ \sigma _ {i} ^ {n} ( j) = \left \{ \begin{array}{ll} j &\textrm{ if } j \leq i, \\ j - 1 &\textrm{ if } j > i, \\ \end{array} \right .$$
generate all the morphisms of $ \Delta $, so that a simplicial object $ X $ is determined by the objects $ X ([ n]) = X _ {n} $, $ n \geq 0 $( called the $ n $- fibres or $ n $- components of the simplicial object $ X $), and the morphisms
$$ d _ {i} = X ( \delta _ {i} ): X _ {n} \rightarrow X _ {n - 1 } \ \ \textrm{ and } \ \ s _ {i} = X ( \sigma _ {i} ): X _ {n} \rightarrow X _ {n + 1 } $$
(called boundary operators and degeneracy operators, respectively). In case $ {\mathcal C} $ is a category of structured sets, the elements of $ X _ {n} $ are usually called the $ n $- dimensional simplices of $ X $. The mappings $ \delta _ {i} $ and $ \sigma _ {i} $ satisfy the relations
$$ \tag{* } \left. \begin{array}{cll} \delta_{j} \delta_{i} &=& \delta_{i} \delta_{j - 1} \quad\ \ \textrm{ if } i < j, \\ \sigma_{j} \sigma_{i} &=& \sigma_{i} \sigma_{j + 1} \quad \ \ \textrm{ if } i \leq j;\\ \sigma_{j} \delta_{i} &=& \left \{ \begin{array}{ll} \delta_{i} \sigma_{j - 1 } & \textrm{ if } i < j, \\ \mathop{\rm id} & \textrm{ if } i = j \textrm{ or } i = j + 1, \\ \delta_{i - 1}\sigma_{j} & \textrm{ if } i > j + 1; \\ \end{array} \right.\\ \end{array} \right \} $$
and any relation between these mappings is a consequence of the relations (*). This means that a simplicial object $ X $ can be identified with a system $ \{ X _ {n} , d _ {i} , s _ {i} \} $ of objects $ X _ {n} $, $ n \geq 0 $, of $ {\mathcal C} $ and morphisms $ d _ {i} : X _ {n} \rightarrow X _ {n - 1 } $ and $ s _ {i} : X _ {n} \rightarrow X _ {n + 1 } $, $ 0 \leq i \leq n $, satisfying the relations
$$ d _ {i} d _ {j} = d _ {j - 1 } d _ {i} \ \textrm{ if } i < j; $$
$$ s _ {i} s _ {j} = s _ {j + 1 } s _ {i} \ \textrm{ if } i \leq j; $$
$$ d _ {i} s _ {j} = \left \{ \begin{array}{ll} s _ {j - 1 } d _ {i} & \textrm{ if } i < j, \\ \mathop{\rm id} & \textrm{ if } i = j \ \textrm{ or } i = j + 1, \\ s _ {j} d _ {i - 1 } & \textrm{ if } i > j + 1. \\ \end{array} \right .$$
Similarly, a co-simplicial object $ X $ can be identified with a system $ \{ X _ {n} , d ^ {i} , s ^ {i} \} $ of objects $ X ^ {n} $, $ n \geq 0 $( $ n $- co-fibres) and morphisms $ d _ {i} : X ^ {n - 1 } \rightarrow X ^ {n} $, $ 0 \leq i \leq n $( co-boundary operators), and $ s ^ {i} : X ^ {n + 1 } \rightarrow X ^ {n} $, $ 0 \leq i \leq n $( co-degeneracy operators), satisfying the relations (*) (with $ \delta _ {i} = d ^ {i} $, $ \sigma _ {i} = s ^ {i} $).
A simplicial mapping $ f: X \rightarrow Y $ between simplicial objects (in the same category $ {\mathcal C} $) is a transformation (morphism) of functors from $ X: \Delta \rightarrow {\mathcal C} $ into $ Y: \Delta \rightarrow {\mathcal C} $, that is, a family of morphisms $ f _ {n} : X _ {n} \rightarrow Y _ {n} $, $ n \geq 0 $, of $ {\mathcal C} $ such that
$$ d _ {i} f _ {n + 1 } = f _ {n} d _ {i} ,\ \ 0 \leq i \leq n + 1, $$
$$ s _ {i} f _ {n} = f _ {n + 1 } s _ {i} ,\ 0 \leq i \leq n. $$
The simplicial objects of $ {\mathcal C} $ and their simplicial mappings form a category, denoted by $ \Delta ^ {0} {\mathcal C} $.
A simplicial homotopy $ h: f \simeq g $ between two simplicial mappings $ f, g: X \rightarrow Y $ between simplicial objects in a category $ {\mathcal C} $ is a family of morphisms $ h _ {i} : X _ {n} \rightarrow Y _ {n + 1 } $, $ 0 \leq i \leq n $, of $ {\mathcal C} $ such that
$$ d _ {0} h _ {0} = f _ {n} ; $$
$$ d _ {n} h _ {n} = g _ {n} ; $$
$$ d _ {i} h _ {j} = \left \{ \begin{array}{ll} h _ {j - 1 } d _ {i} &\textrm{ if } i < j, \\ d _ {j} h _ {j - 1 } &\textrm{ if } i = j > 0, \\ h _ {j} d _ {i - 1 } &\textrm{ if } i > j + 1; \\ \end{array} \right .$$
$$ s _ {i} h _ {j} = \left \{ \begin{array}{ll} h _ {j + 1 } s _ {i} &\textrm{ if } i \leq j, \\ h _ {j} s _ {i - 1 } &\textrm{ if } i > j. \\ \end{array} \right .$$
On the basis of this definition one can reproduce in essence the whole of ordinary homotopy theory in the category $ \Delta ^ {0} {\mathcal C} $, for any category $ {\mathcal C} $. In the case of the category of sets or topological spaces, the geometric realization functor (see Simplicial set) carries this "simplicial" theory into the usual one.
Examples of simplicial objects are a simplicial set, a simplicial topological space, a simplicial algebraic variety, a simplicial group, a simplicial Abelian group, a simplicial Lie algebra, a simplicial smooth manifold, etc.
Every simplicial Abelian group can be made into a chain complex with boundary operator $ d = \sum (- 1) ^ {i} d _ {i} $.
References
[1] | P. Gabriel, M. Zisman, "Calculus of fractions and homotopy theory" , Springer (1967) |
[2] | J.P. May, "Simplicial objects in algebraic topology" , v. Nostrand (1967) |
[3] | K. Lamotke, "Semisimpliziale algebraische Topologie" , Springer (1968) |
Simplicial object in a category. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Simplicial_object_in_a_category&oldid=49427