Difference between revisions of "Schur theorems"
Ulf Rehmann (talk | contribs) m (Undo revision 48627 by Ulf Rehmann (talk)) Tag: Undo |
m (using vdots and ddots) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0834801.png | ||
+ | $#A+1 = 24 n = 0 | ||
+ | $#C+1 = 24 : ~/encyclopedia/old_files/data/S083/S.0803480 Schur theorems | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Theorems for finding a solution to the [[Coefficient problem|coefficient problem]] for bounded analytic functions. They were obtained by I. Schur [[#References|[1]]]. Let $ B $ | |
+ | be the class of regular functions $ f{ ( z) } = c _ { 0 } {+c} _ { 1 } {z+\dots} $ | ||
+ | in $ | z | < 1 $ | ||
+ | satisfying in it the condition $ | f{ ( z ) } | \leq 1 $. | ||
+ | Let $ \mathbf C ^ { n } $, | ||
+ | $ n \geq 1 $, | ||
+ | be the $ n $-dimensional complex Euclidean space, its points are $ n $- | ||
+ | tuples of complex numbers $ { ( c _ { 0 }, \dots, c _ { {n-1} } ) } $; | ||
+ | let $ B ^ { { ( n) } } $ | ||
+ | be a set of points $ { ( c _ { 0 }, \dots, c _ { {n-1} } ) } \in \mathbf C ^ { n } $ | ||
+ | such that the numbers $ c _ { 0 }, \dots, c _ { {n-1} } $ | ||
+ | are the first $ n $ | ||
+ | coefficients of some function from $ B $. | ||
+ | The sets $ B ^ { { ( n) } } $ | ||
+ | are closed, bounded and convex in $ \mathbf C ^ { n } $. | ||
+ | Then the following theorems hold. | ||
− | Schur's | + | Schur's first theorem: To the points $ { ( c _ { 0 }, \dots, c _ { {n-1} } ) } $ |
+ | on the boundary of $ B ^ { { ( n) } } $ | ||
+ | there correspond in $ B $ | ||
+ | only rational functions of the form | ||
− | + | $$ \frac{ \overline{\alpha _ { {n-1} } } + \overline{\alpha _ { {n-2} } } {z+\dots} + \overline{\alpha _ { 0 } } z ^ { {n-1} } }{ \alpha _ { 0 } {+\alpha} _ { 1 } {z+\dots} {+\alpha} _ { {n-1} } z ^ { {n-1} } } . $$ | |
+ | |||
+ | Schur's second theorem: A necessary and sufficient condition for $ { ( c _ { 0 }, \dots, c _ { {n-1} } ) } $ | ||
+ | to be an interior point of $ B ^ { { ( n) } } $ | ||
+ | is that the following inequalities hold for $ k = 1, \dots, n $: | ||
+ | |||
+ | $$ \left | \begin{array}{llllllll} 1 & 0 &\cdots & 0 &c _ { 0 } &c _ { 1 } &\cdots &c _ { {k-1} } \\ 0 & 1 &\cdots & 0 & 0 &c _ { 0 } &\cdots &c _ { {k-2} } \\ \vdots &\vdots &\ddots &\vdots &\vdots &\vdots &\ddots &\vdots \\ 0 & 0 &\cdots & 1 & 0 & 0 &\cdots &c _ { 0 } \\ \overline{c _ { 0 } } & 0 &\cdots & 0 & 1 & 0 &\cdots & 0 \\ \overline{c _ { 1 } } &\overline{c _ { 0 } } &\cdots & 0 & 0 & 1 &\cdots & 0 \\ \vdots &\vdots &\ddots &\vdots &\vdots &\vdots &\ddots &\vdots \\ \overline{c _ { {k-1} } } &\overline{c _ { {k-2} } } &\cdots &\overline{c _ { 0 } } & 0 & 0 &\cdots & 1 \\ \end{array} \right | > 0. $$ | ||
Schur's second theorem provides the complete solution to the coefficient problem for bounded functions in the case of interior points of the coefficients region. | Schur's second theorem provides the complete solution to the coefficient problem for bounded functions in the case of interior points of the coefficients region. | ||
Line 13: | Line 45: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I. Schur, "Ueber Potentzreihen, die im Innern des Einheitkreises berchränkt sind" ''J. Reine Angew. Math.'' , '''147''' (1917) pp. 205–232</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Bieberbach, "Lehrbuch der Funktionentheorie" , '''2''' , Teubner (1931)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I. Schur, "Ueber Potentzreihen, die im Innern des Einheitkreises berchränkt sind" ''J. Reine Angew. Math.'' , '''147''' (1917) pp. 205–232</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Bieberbach, "Lehrbuch der Funktionentheorie" , '''2''' , Teubner (1931)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981) pp. 40</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981) pp. 40</TD></TR></table> |
Latest revision as of 00:51, 21 January 2022
Theorems for finding a solution to the coefficient problem for bounded analytic functions. They were obtained by I. Schur [1]. Let $ B $
be the class of regular functions $ f{ ( z) } = c _ { 0 } {+c} _ { 1 } {z+\dots} $
in $ | z | < 1 $
satisfying in it the condition $ | f{ ( z ) } | \leq 1 $.
Let $ \mathbf C ^ { n } $,
$ n \geq 1 $,
be the $ n $-dimensional complex Euclidean space, its points are $ n $-
tuples of complex numbers $ { ( c _ { 0 }, \dots, c _ { {n-1} } ) } $;
let $ B ^ { { ( n) } } $
be a set of points $ { ( c _ { 0 }, \dots, c _ { {n-1} } ) } \in \mathbf C ^ { n } $
such that the numbers $ c _ { 0 }, \dots, c _ { {n-1} } $
are the first $ n $
coefficients of some function from $ B $.
The sets $ B ^ { { ( n) } } $
are closed, bounded and convex in $ \mathbf C ^ { n } $.
Then the following theorems hold.
Schur's first theorem: To the points $ { ( c _ { 0 }, \dots, c _ { {n-1} } ) } $ on the boundary of $ B ^ { { ( n) } } $ there correspond in $ B $ only rational functions of the form
$$ \frac{ \overline{\alpha _ { {n-1} } } + \overline{\alpha _ { {n-2} } } {z+\dots} + \overline{\alpha _ { 0 } } z ^ { {n-1} } }{ \alpha _ { 0 } {+\alpha} _ { 1 } {z+\dots} {+\alpha} _ { {n-1} } z ^ { {n-1} } } . $$
Schur's second theorem: A necessary and sufficient condition for $ { ( c _ { 0 }, \dots, c _ { {n-1} } ) } $ to be an interior point of $ B ^ { { ( n) } } $ is that the following inequalities hold for $ k = 1, \dots, n $:
$$ \left | \begin{array}{llllllll} 1 & 0 &\cdots & 0 &c _ { 0 } &c _ { 1 } &\cdots &c _ { {k-1} } \\ 0 & 1 &\cdots & 0 & 0 &c _ { 0 } &\cdots &c _ { {k-2} } \\ \vdots &\vdots &\ddots &\vdots &\vdots &\vdots &\ddots &\vdots \\ 0 & 0 &\cdots & 1 & 0 & 0 &\cdots &c _ { 0 } \\ \overline{c _ { 0 } } & 0 &\cdots & 0 & 1 & 0 &\cdots & 0 \\ \overline{c _ { 1 } } &\overline{c _ { 0 } } &\cdots & 0 & 0 & 1 &\cdots & 0 \\ \vdots &\vdots &\ddots &\vdots &\vdots &\vdots &\ddots &\vdots \\ \overline{c _ { {k-1} } } &\overline{c _ { {k-2} } } &\cdots &\overline{c _ { 0 } } & 0 & 0 &\cdots & 1 \\ \end{array} \right | > 0. $$
Schur's second theorem provides the complete solution to the coefficient problem for bounded functions in the case of interior points of the coefficients region.
References
[1] | I. Schur, "Ueber Potentzreihen, die im Innern des Einheitkreises berchränkt sind" J. Reine Angew. Math. , 147 (1917) pp. 205–232 |
[2] | L. Bieberbach, "Lehrbuch der Funktionentheorie" , 2 , Teubner (1931) |
[3] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
Comments
References
[a1] | P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11 |
[a2] | J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981) pp. 40 |
Schur theorems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schur_theorems&oldid=49417