Difference between revisions of "Pauli matrices"
Ulf Rehmann (talk | contribs) m (Undo revision 48144 by Ulf Rehmann (talk)) Tag: Undo |
m (fixing spaces) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0718601.png | ||
+ | $#A+1 = 41 n = 0 | ||
+ | $#C+1 = 41 : ~/encyclopedia/old_files/data/P071/P.0701860 Pauli matrices | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Certain special constant Hermitian $ ( 2 \times 2) $-matrices with complex entries. They were introduced by W. Pauli (1927) to describe spin ($ \vec{s} = (\hbar /2) \vec{\sigma} $) | |
+ | and magnetic moment $ ( \vec{\mu} = ( e \hbar /2mc) \vec{\sigma} ) $ | ||
+ | of an electron. His equation describes correctly in the non-relativistic case particles of spin 1/2 (in units $ \hbar $) | ||
+ | and can be obtained from the [[Dirac equation|Dirac equation]] for $ v/c \ll 1 $. | ||
+ | In explicit form the Pauli matrices are: | ||
− | + | $$ | |
+ | \sigma _ {1} = \left ( | ||
+ | \begin{array}{cc} | ||
+ | 0 & 1 \\ | ||
+ | 1 & 0 \\ | ||
+ | \end{array} | ||
+ | \right ) ; \ \ | ||
+ | \sigma _ {2} = \left ( | ||
+ | \begin{array}{cc} | ||
+ | 0 &- i \\ | ||
+ | i & 0 \\ | ||
+ | \end{array} | ||
+ | \right ) ; \ \ | ||
+ | \sigma _ {3} = \left ( | ||
+ | \begin{array}{cc} | ||
+ | 1 & 0 \\ | ||
+ | 0 &- 1 \\ | ||
+ | \end{array} | ||
+ | \right ) . | ||
+ | $$ | ||
− | + | Their eigen values are $ \pm 1 $. | |
+ | The Pauli matrices satisfy the following algebraic relations: | ||
+ | |||
+ | $$ | ||
+ | \sigma _ {i} \sigma _ {k} + \sigma _ {k} \sigma _ {i} = 2 \delta _ {ik} , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \sigma _ {i} \sigma _ {k} - \sigma _ {k} \sigma _ {i} = 2i \epsilon _ {ikl} \sigma _ {l} . | ||
+ | $$ | ||
Together with the unit matrix | Together with the unit matrix | ||
− | + | $$ | |
+ | \sigma _ {0} = \left ( | ||
+ | \begin{array}{cc} | ||
+ | 1 & 0 \\ | ||
+ | 0 & 1 \\ | ||
+ | \end{array} | ||
+ | \right ) | ||
+ | $$ | ||
+ | |||
+ | the Pauli matrices form a complete system of second-order matrices by which an arbitrary linear operator (matrix) of dimension 2 can be expanded. They act on two-component spin functions $ \psi _ {A} $, | ||
+ | $ A = 1, 2 $, | ||
+ | and are transformed under a rotation of the coordinate system by a linear two-valued representation of the rotation group. Under a rotation by an infinitesimal angle $ \theta $ | ||
+ | around an axis with a directed unit vector $ \mathbf n $, | ||
+ | a spinor $ \psi _ {A} $ | ||
+ | is transformed according to the formula | ||
− | + | $$ | |
+ | \psi _ {A} = \left [ \sigma _ {0,AB } + | ||
− | + | \frac{1}{2} | |
+ | i \theta ( \sigma \cdot \mathbf n ) _ {AB} \right ] \psi _ {B} ^ \prime , | ||
+ | $$ | ||
− | + | $$ | |
+ | \sigma \cdot \mathbf n = \sigma _ {1} n _ {x} + \sigma _ {2} n _ {y} + \sigma _ {3} n _ {z} . | ||
+ | $$ | ||
− | From the Pauli matrices one can form the [[Dirac matrices|Dirac matrices]] | + | From the Pauli matrices one can form the [[Dirac matrices|Dirac matrices]] $ \gamma _ \alpha $, |
+ | $ \alpha = 0, 1, 2, 3 $: | ||
− | + | $$ | |
+ | \gamma _ {0} = \left ( | ||
+ | \begin{array}{cc} | ||
+ | \sigma _ {0} & 0 \\ | ||
+ | 0 &- | ||
+ | \sigma _ {0} \\ | ||
+ | \end{array} | ||
+ | \right ) ; \ \ | ||
+ | \gamma _ {k} = \left ( | ||
+ | \begin{array}{cc} | ||
+ | 0 &\sigma _ {k} \\ | ||
+ | - \sigma _ {k} & 0 \\ | ||
+ | \end{array} | ||
+ | \right ) ; \ \ | ||
+ | k = 1, 2, 3. | ||
+ | $$ | ||
− | The real linear combinations of | + | The real linear combinations of $ \sigma _ {0} $, |
+ | $ i \sigma _ {1} $, | ||
+ | $ i \sigma _ {2} $, | ||
+ | $ i \sigma _ {3} $ | ||
+ | form a four-dimensional subalgebra of the algebra of complex $ ( 2 \times 2) $-matrices (under matrix multiplication) that is isomorphic to the simplest system of hypercomplex numbers, the quaternions, cf. [[Quaternion|Quaternion]]. They are used whenever an elementary particle has a discrete parameter taking only two values, for example, to describe an isospin nucleon (a proton-neutron). Quite generally, the Pauli matrices are used not only to describe isotopic space, but also in the formalism of the group of inner symmetries $ \mathop{\rm SU} ( 2) $. | ||
+ | In this case they are generators of a $ 2 $-dimensional representation of $ \mathop{\rm SU} ( 2) $ | ||
+ | and are denoted by $ \tau _ {1} $, | ||
+ | $ \tau _ {2} $ | ||
+ | and $ \tau _ {3} $. | ||
+ | Sometimes it is convenient to use the linear combinations | ||
− | + | $$ | |
+ | \tau ^ {+} = | ||
+ | \frac{1}{2} | ||
+ | ( \tau _ {1} + i \tau _ {2} ) = \ | ||
+ | \left ( | ||
+ | \begin{array}{cc} | ||
+ | 0 & 1 \\ | ||
+ | 0 & 0 \\ | ||
+ | \end{array} | ||
+ | \right ) ; \ \ | ||
+ | \tau ^ {-} = | ||
+ | \frac{1}{2} | ||
+ | ( \tau _ {1} - i \tau _ {2} ) = \ | ||
+ | \left ( | ||
+ | \begin{array}{cc} | ||
+ | 0 & 0 \\ | ||
+ | 1 & 0 \\ | ||
+ | \end{array} | ||
+ | \right ) . | ||
+ | $$ | ||
− | In certain cases one introduces for a relativistically covariant description of two-component spinor functions instead of the Pauli matrices, matrices | + | In certain cases one introduces for a relativistically covariant description of two-component spinor functions instead of the Pauli matrices, matrices $ S _ \alpha $ |
+ | related by means of the following identities: | ||
− | + | $$ \tag{1 } | |
+ | S _ {0} S _ {0} ^ \star + \sigma _ {0} = 0; \ \ | ||
+ | S _ {i} S _ {0} ^ \star = \sigma _ {i} ,\ \ | ||
+ | i = 1, 2, 3, | ||
+ | $$ | ||
− | where the symbol | + | where the symbol $ \star $ |
+ | denotes complex conjugation. The matrices $ S _ \alpha $ | ||
+ | satisfy the commutator relations | ||
− | + | $$ \tag{2 } | |
+ | S _ \alpha S _ \beta ^ \star + S _ \beta S _ \alpha ^ \star = 2 \eta _ {\alpha , \beta } , | ||
+ | $$ | ||
− | where | + | where $ \eta _ {\alpha , \beta } $ |
+ | are the components of the metric tensor of the Minkowski space of signature $ + 2 $. | ||
+ | The formulas (1) and (2) make it possible to generalize the Pauli matrices covariantly to an arbitrary curved space: | ||
− | + | $$ | |
+ | S _ \alpha S _ \beta ^ \star + S _ \beta S _ \alpha ^ \star = 2g _ {\alpha \beta } , | ||
+ | $$ | ||
− | where | + | where $ g _ {\alpha \beta } $ |
+ | are the components of the metric tensor of the curved space. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> W. Pauli, , ''Works on quantum theory'' , '''1–2''' , Moscow (1975–1977) (In Russian; translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.F. Nelina, "Physics of elementary particles" , Moscow (1977) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D. Bril, J.A. Wheeler, , ''The latest problems on gravitation'' , Moscow (1961) pp. 381–427 (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> W. Pauli, , ''Works on quantum theory'' , '''1–2''' , Moscow (1975–1977) (In Russian; translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.F. Nelina, "Physics of elementary particles" , Moscow (1977) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D. Bril, J.A. Wheeler, , ''The latest problems on gravitation'' , Moscow (1961) pp. 381–427 (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Pauli, "Zur Quantenmechanik des magnetischen Elektrons" ''Z. Phys.'' , '''43''' : 601</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Pauli (ed.) , ''Handbuch der Physik'' , '''24''' , Springer (1933)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R.M. Wald, "General relativity" , Univ. Chicago Press (1984) pp. Chapt. 4</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> Y. Choquet-Bruhat, C. DeWitt-Morette, M. Dillard-Bleick, "Analysis, manifolds and physics" , North-Holland (1982) (Translated from French)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Pauli, "Zur Quantenmechanik des magnetischen Elektrons" ''Z. Phys.'' , '''43''' : 601</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Pauli (ed.) , ''Handbuch der Physik'' , '''24''' , Springer (1933)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R.M. Wald, "General relativity" , Univ. Chicago Press (1984) pp. Chapt. 4</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> Y. Choquet-Bruhat, C. DeWitt-Morette, M. Dillard-Bleick, "Analysis, manifolds and physics" , North-Holland (1982) (Translated from French)</TD></TR></table> |
Latest revision as of 01:11, 19 March 2022
Certain special constant Hermitian $ ( 2 \times 2) $-matrices with complex entries. They were introduced by W. Pauli (1927) to describe spin ($ \vec{s} = (\hbar /2) \vec{\sigma} $)
and magnetic moment $ ( \vec{\mu} = ( e \hbar /2mc) \vec{\sigma} ) $
of an electron. His equation describes correctly in the non-relativistic case particles of spin 1/2 (in units $ \hbar $)
and can be obtained from the Dirac equation for $ v/c \ll 1 $.
In explicit form the Pauli matrices are:
$$ \sigma _ {1} = \left ( \begin{array}{cc} 0 & 1 \\ 1 & 0 \\ \end{array} \right ) ; \ \ \sigma _ {2} = \left ( \begin{array}{cc} 0 &- i \\ i & 0 \\ \end{array} \right ) ; \ \ \sigma _ {3} = \left ( \begin{array}{cc} 1 & 0 \\ 0 &- 1 \\ \end{array} \right ) . $$
Their eigen values are $ \pm 1 $. The Pauli matrices satisfy the following algebraic relations:
$$ \sigma _ {i} \sigma _ {k} + \sigma _ {k} \sigma _ {i} = 2 \delta _ {ik} , $$
$$ \sigma _ {i} \sigma _ {k} - \sigma _ {k} \sigma _ {i} = 2i \epsilon _ {ikl} \sigma _ {l} . $$
Together with the unit matrix
$$ \sigma _ {0} = \left ( \begin{array}{cc} 1 & 0 \\ 0 & 1 \\ \end{array} \right ) $$
the Pauli matrices form a complete system of second-order matrices by which an arbitrary linear operator (matrix) of dimension 2 can be expanded. They act on two-component spin functions $ \psi _ {A} $, $ A = 1, 2 $, and are transformed under a rotation of the coordinate system by a linear two-valued representation of the rotation group. Under a rotation by an infinitesimal angle $ \theta $ around an axis with a directed unit vector $ \mathbf n $, a spinor $ \psi _ {A} $ is transformed according to the formula
$$ \psi _ {A} = \left [ \sigma _ {0,AB } + \frac{1}{2} i \theta ( \sigma \cdot \mathbf n ) _ {AB} \right ] \psi _ {B} ^ \prime , $$
$$ \sigma \cdot \mathbf n = \sigma _ {1} n _ {x} + \sigma _ {2} n _ {y} + \sigma _ {3} n _ {z} . $$
From the Pauli matrices one can form the Dirac matrices $ \gamma _ \alpha $, $ \alpha = 0, 1, 2, 3 $:
$$ \gamma _ {0} = \left ( \begin{array}{cc} \sigma _ {0} & 0 \\ 0 &- \sigma _ {0} \\ \end{array} \right ) ; \ \ \gamma _ {k} = \left ( \begin{array}{cc} 0 &\sigma _ {k} \\ - \sigma _ {k} & 0 \\ \end{array} \right ) ; \ \ k = 1, 2, 3. $$
The real linear combinations of $ \sigma _ {0} $, $ i \sigma _ {1} $, $ i \sigma _ {2} $, $ i \sigma _ {3} $ form a four-dimensional subalgebra of the algebra of complex $ ( 2 \times 2) $-matrices (under matrix multiplication) that is isomorphic to the simplest system of hypercomplex numbers, the quaternions, cf. Quaternion. They are used whenever an elementary particle has a discrete parameter taking only two values, for example, to describe an isospin nucleon (a proton-neutron). Quite generally, the Pauli matrices are used not only to describe isotopic space, but also in the formalism of the group of inner symmetries $ \mathop{\rm SU} ( 2) $. In this case they are generators of a $ 2 $-dimensional representation of $ \mathop{\rm SU} ( 2) $ and are denoted by $ \tau _ {1} $, $ \tau _ {2} $ and $ \tau _ {3} $. Sometimes it is convenient to use the linear combinations
$$ \tau ^ {+} = \frac{1}{2} ( \tau _ {1} + i \tau _ {2} ) = \ \left ( \begin{array}{cc} 0 & 1 \\ 0 & 0 \\ \end{array} \right ) ; \ \ \tau ^ {-} = \frac{1}{2} ( \tau _ {1} - i \tau _ {2} ) = \ \left ( \begin{array}{cc} 0 & 0 \\ 1 & 0 \\ \end{array} \right ) . $$
In certain cases one introduces for a relativistically covariant description of two-component spinor functions instead of the Pauli matrices, matrices $ S _ \alpha $ related by means of the following identities:
$$ \tag{1 } S _ {0} S _ {0} ^ \star + \sigma _ {0} = 0; \ \ S _ {i} S _ {0} ^ \star = \sigma _ {i} ,\ \ i = 1, 2, 3, $$
where the symbol $ \star $ denotes complex conjugation. The matrices $ S _ \alpha $ satisfy the commutator relations
$$ \tag{2 } S _ \alpha S _ \beta ^ \star + S _ \beta S _ \alpha ^ \star = 2 \eta _ {\alpha , \beta } , $$
where $ \eta _ {\alpha , \beta } $ are the components of the metric tensor of the Minkowski space of signature $ + 2 $. The formulas (1) and (2) make it possible to generalize the Pauli matrices covariantly to an arbitrary curved space:
$$ S _ \alpha S _ \beta ^ \star + S _ \beta S _ \alpha ^ \star = 2g _ {\alpha \beta } , $$
where $ g _ {\alpha \beta } $ are the components of the metric tensor of the curved space.
References
[1] | W. Pauli, , Works on quantum theory , 1–2 , Moscow (1975–1977) (In Russian; translated from German) |
[2] | N.F. Nelina, "Physics of elementary particles" , Moscow (1977) (In Russian) |
[3] | D. Bril, J.A. Wheeler, , The latest problems on gravitation , Moscow (1961) pp. 381–427 (In Russian) |
Comments
References
[a1] | W. Pauli, "Zur Quantenmechanik des magnetischen Elektrons" Z. Phys. , 43 : 601 |
[a2] | W. Pauli (ed.) , Handbuch der Physik , 24 , Springer (1933) |
[a3] | R.M. Wald, "General relativity" , Univ. Chicago Press (1984) pp. Chapt. 4 |
[a4] | Y. Choquet-Bruhat, C. DeWitt-Morette, M. Dillard-Bleick, "Analysis, manifolds and physics" , North-Holland (1982) (Translated from French) |
Pauli matrices. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pauli_matrices&oldid=49360