Difference between revisions of "Zygmund class of functions"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fixing spaces) |
||
Line 13: | Line 13: | ||
Let $ M $ | Let $ M $ | ||
be a positive real number. The Zygmund class $ Z _ {M} $ | be a positive real number. The Zygmund class $ Z _ {M} $ | ||
− | is the class of continuous $ 2 \pi $- | + | is the class of continuous $ 2 \pi $-periodic functions $ f $ |
− | periodic functions $ f $ | ||
with the property that for all $ x $ | with the property that for all $ x $ | ||
and all $ h > 0 $ | and all $ h > 0 $ | ||
Line 67: | Line 66: | ||
$$ | $$ | ||
− | for a $ 2 \pi $- | + | for a $ 2 \pi $-periodic function $ f $, |
− | periodic function $ f $, | + | is its Zygmund modulus. In terms of this, Zygmund's theorem above can also be stated as: A $ 2 \pi $-periodic function $ f $ |
− | is its Zygmund modulus. In terms of this, Zygmund's theorem above can also be stated as: A $ 2 \pi $- | + | satisfies $ E _ {n} ( f ) \leq n ^ {- 1} A $ |
− | periodic function $ f $ | ||
− | satisfies $ E _ {n} ( f ) \leq n ^ {-} | ||
for some $ A $ | for some $ A $ | ||
− | if and only if $ \omega _ {f} ^ {*} ( h ) \leq Bh $( | + | if and only if $ \omega _ {f} ^ {*} ( h ) \leq Bh $ ($ h > 0 $) |
− | $ h > 0 $) | ||
for some $ B $. | for some $ B $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.W. Cheney, "Introduction to approximation theory" , Chelsea, reprint (1982) pp. 203ff</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.W. Cheney, "Introduction to approximation theory" , Chelsea, reprint (1982) pp. 203ff</TD></TR></table> |
Latest revision as of 04:01, 15 June 2022
Let $ M $
be a positive real number. The Zygmund class $ Z _ {M} $
is the class of continuous $ 2 \pi $-periodic functions $ f $
with the property that for all $ x $
and all $ h > 0 $
the inequality
$$ | f ( x + h ) - 2f ( x) + f ( x - h ) | \leq M h $$
holds. The class $ Z _ {M} $ was introduced by A. Zygmund [1]. In terms of this class one can obtain a conclusive solution to the Jackson–Bernstein problem on direct and inverse theorems in the theory of approximation of functions (cf. Bernstein theorem; Jackson theorem). For example: A continuous $ 2 \pi $- periodic function $ f $ belongs to the Zygmund class $ Z _ {M} $ for some $ M > 0 $ if and only if its best uniform approximation error $ E _ {n} ( f ) $ by trigonometric polynomials of degree $ \leq n $ satisfies the inequality
$$ E _ {n} ( f ) \leq \frac{A}{n} , $$
where $ A > 0 $ is a constant. The modulus of continuity $ \omega ( \delta , f ) $ of any function $ f \in Z _ {M} $ admits the estimate
$$ \omega ( \delta , f ) \leq \frac{M}{2 \mathop{\rm ln} \sqrt {2 } + 1 } \delta \mathop{\rm ln} \frac \pi \delta + O ( \delta ) $$
in which the constant $ M / 2 \mathop{\rm ln} ( \sqrt {2 } + 1 ) $ cannot be improved on for the entire class $ Z _ {M} $[3].
References
[1] | A. Zygmund, "Smooth functions" Duke Math. J. , 12 : 1 (1945) pp. 47–76 ((Also: Selected papers of Antoni Zygmund, Vol. 2, Kluwer, 1989, pp. 184–213.)) |
[2] | S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian) |
[3] | A.V. Efimov, "Estimation of the modules of continuity of functions of class " Izv. Akad. Nauk. SSSR Ser. Mat. , 21 : 2 (1957) pp. 283–288 (In Russian) |
Comments
The quantity
$$ \omega _ {f} ^ {*} ( h) = \sup _ { x } \sup _ {| \delta | \leq n } \ | f( x+ \delta ) - 2f( x) + f( x- \delta ) | , $$
for a $ 2 \pi $-periodic function $ f $, is its Zygmund modulus. In terms of this, Zygmund's theorem above can also be stated as: A $ 2 \pi $-periodic function $ f $ satisfies $ E _ {n} ( f ) \leq n ^ {- 1} A $ for some $ A $ if and only if $ \omega _ {f} ^ {*} ( h ) \leq Bh $ ($ h > 0 $) for some $ B $.
References
[a1] | E.W. Cheney, "Introduction to approximation theory" , Chelsea, reprint (1982) pp. 203ff |
Zygmund class of functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Zygmund_class_of_functions&oldid=49251