Difference between revisions of "Reflection principle"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fixing dots) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 14: | Line 14: | ||
1) Let $ G $ | 1) Let $ G $ | ||
− | be a domain in a $ k $- | + | be a domain in a $ k $-dimensional Euclidean space $ ( k \geq 1) $ |
− | dimensional Euclidean space $ ( k \geq 1) $ | + | that is bounded by a Jordan surface $ \Gamma $ (in particular, a smooth or piecewise-smooth surface $ \Gamma $ |
− | that is bounded by a Jordan surface $ \Gamma $( | + | without self-intersections) containing a $ ( k- 1) $-dimensional subdomain $ \sigma $ |
− | in particular, a smooth or piecewise-smooth surface $ \Gamma $ | + | of a $ ( k- 1) $-dimensional hyperplane $ L $. |
− | without self-intersections) containing a $ ( k- 1) $- | + | If the function $ U( x _ {1}, \dots, x _ {k} ) $ |
− | dimensional subdomain $ \sigma $ | ||
− | of a $ ( k- 1) $- | ||
− | dimensional hyperplane $ L $. | ||
− | If the function $ U( x _ {1} \dots x _ {k} ) $ | ||
is harmonic in $ G $, | is harmonic in $ G $, | ||
continuous on $ G \cup \sigma $ | continuous on $ G \cup \sigma $ | ||
and equal to zero everywhere on $ \sigma $, | and equal to zero everywhere on $ \sigma $, | ||
− | then $ U( x _ {1} \dots x _ {k} ) $ | + | then $ U( x _ {1}, \dots, x _ {k} ) $ |
can be extended as a [[Harmonic function|harmonic function]] across $ \sigma $ | can be extended as a [[Harmonic function|harmonic function]] across $ \sigma $ | ||
into the domain $ G ^ {*} $ | into the domain $ G ^ {*} $ | ||
Line 34: | Line 30: | ||
$$ | $$ | ||
− | U( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) = - U( x _ {1} \dots x _ {k} ), | + | U( x _ {1} ^ {*}, \dots, x _ {k} ^ {*} ) = - U( x _ {1}, \dots, x _ {k} ), |
$$ | $$ | ||
− | where the points $ ( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) \in G ^ {*} $ | + | where the points $ ( x _ {1} ^ {*}, \dots, x _ {k} ^ {*} ) \in G ^ {*} $ |
− | and $ ( x _ {1} \dots x _ {k} ) \in G $ | + | and $ ( x _ {1}, \dots, x _ {k} ) \in G $ |
are symmetric relative to $ L $. | are symmetric relative to $ L $. | ||
2) Let $ G $ | 2) Let $ G $ | ||
− | be a domain of a $ k $- | + | be a domain of a $ k $-dimensional Euclidean space $ ( k \geq 1) $ |
− | dimensional Euclidean space $ ( k \geq 1) $ | ||
that is bounded by a Jordan surface $ \Gamma $ | that is bounded by a Jordan surface $ \Gamma $ | ||
− | containing a $ ( k- 1) $- | + | containing a $ ( k- 1) $-dimensional subdomain $ \sigma $ |
− | dimensional subdomain $ \sigma $ | + | of a $ ( k- 1) $-dimensional sphere $ \Sigma $ |
− | of a $ ( k- 1) $- | ||
− | dimensional sphere $ \Sigma $ | ||
of radius $ R > 0 $ | of radius $ R > 0 $ | ||
− | with centre at a point $ M ^ {0} = ( x _ {1} ^ {0} \dots x _ {k} ^ {0} ) $. | + | with centre at a point $ M ^ {0} = ( x _ {1} ^ {0}, \dots, x _ {k} ^ {0} ) $. |
− | If $ U( x _ {1} \dots x _ {k} ) $ | + | If $ U( x _ {1}, \dots, x _ {k} ) $ |
is harmonic in $ G $, | is harmonic in $ G $, | ||
continuous on $ G \cup \sigma $ | continuous on $ G \cup \sigma $ | ||
and equal to zero everywhere on $ \sigma $, | and equal to zero everywhere on $ \sigma $, | ||
− | then $ U( x _ {1} \dots x _ {k} ) $ | + | then $ U( x _ {1}, \dots, x _ {k} ) $ |
can be extended as a harmonic function across $ \sigma $ | can be extended as a harmonic function across $ \sigma $ | ||
into the domain $ G ^ {*} $ | into the domain $ G ^ {*} $ | ||
that is symmetric to $ G $ | that is symmetric to $ G $ | ||
− | relative to $ \Sigma $( | + | relative to $ \Sigma $ (i.e. obtained from $ G $ |
− | i.e. obtained from $ G $ | ||
by means of the transformation of inverse radii — inversions — relative to $ \Sigma $). | by means of the transformation of inverse radii — inversions — relative to $ \Sigma $). | ||
This continuation is achieved by means of the [[Kelvin transformation|Kelvin transformation]], taken with the opposite sign, of $ U $ | This continuation is achieved by means of the [[Kelvin transformation|Kelvin transformation]], taken with the opposite sign, of $ U $ | ||
Line 67: | Line 59: | ||
$$ | $$ | ||
− | U( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) = | + | U( x _ {1} ^ {*}, \dots, x _ {k} ^ {*} ) = |
$$ | $$ | ||
Line 73: | Line 65: | ||
= \ | = \ | ||
- | - | ||
− | \frac{R ^ {k-} | + | \frac{R ^ {k- 2} }{r ^ {k- 2} } |
U \left ( x _ {1} ^ {0} + R | U \left ( x _ {1} ^ {0} + R | ||
^ {2} | ^ {2} | ||
\frac{x _ {1} ^ {*} - x _ {1} ^ {0} }{r ^ {2} } | \frac{x _ {1} ^ {*} - x _ {1} ^ {0} }{r ^ {2} } | ||
− | + | , \dots, x _ {k} ^ {0} + R ^ {2} | |
\frac{x _ {k} ^ {*} - x _ {k} ^ {0} }{r ^ {2} } | \frac{x _ {k} ^ {*} - x _ {k} ^ {0} }{r ^ {2} } | ||
\right ) , | \right ) , | ||
$$ | $$ | ||
− | where $ ( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) \in G ^ {*} $, | + | where $ ( x _ {1} ^ {*}, \dots, x _ {k} ^ {*} ) \in G ^ {*} $, |
− | $ r = \sqrt {( x _ {1} ^ {*} - x _ {1} ^ {0} ) ^ {2} + \ | + | $ r = \sqrt {( x _ {1} ^ {*} - x _ {1} ^ {0} ) ^ {2} + \cdots + ( x _ {k} ^ {*} - x _ {k} ^ {0} ) ^ {2} } $. |
Under the transformation of inverse radii relative to $ \Sigma $, | Under the transformation of inverse radii relative to $ \Sigma $, | ||
− | the point $ M ^ {*} = ( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) $ | + | the point $ M ^ {*} = ( x _ {1} ^ {*}, \dots, x _ {k} ^ {*} ) $ |
− | is mapped to the point $ M( x _ {1} \dots x _ {k} ) $, | + | is mapped to the point $ M( x _ {1}, \dots, x _ {k} ) $, |
in correspondence with | in correspondence with | ||
Line 92: | Line 84: | ||
x _ {1} - x _ {1} ^ {0} = R ^ {2} | x _ {1} - x _ {1} ^ {0} = R ^ {2} | ||
\frac{x _ {1} ^ {*} - x _ {1} ^ {0} }{r ^ {2} } | \frac{x _ {1} ^ {*} - x _ {1} ^ {0} }{r ^ {2} } | ||
− | + | , \dots, x _ {k} - x _ {k} ^ {0} = \ | |
R ^ {2} | R ^ {2} | ||
\frac{x _ {k} ^ {*} - x _ {k} ^ {0} }{r ^ {2} } | \frac{x _ {k} ^ {*} - x _ {k} ^ {0} }{r ^ {2} } | ||
Line 100: | Line 92: | ||
such that if $ M ^ {*} \in G ^ {*} $, | such that if $ M ^ {*} \in G ^ {*} $, | ||
then $ M $ | then $ M $ | ||
− | belongs to the domain $ G $( | + | belongs to the domain $ G $ (where $ U $ |
− | where $ U $ | ||
is given), and if $ M ^ {*} \in \sigma $, | is given), and if $ M ^ {*} \in \sigma $, | ||
then $ M = M ^ {*} $. | then $ M = M ^ {*} $. |
Latest revision as of 06:40, 13 June 2022
A generalization of the symmetry principle for harmonic functions to harmonic functions in an arbitrary number of independent variables. Some formulations of the reflection principle are as follows:
1) Let $ G $ be a domain in a $ k $-dimensional Euclidean space $ ( k \geq 1) $ that is bounded by a Jordan surface $ \Gamma $ (in particular, a smooth or piecewise-smooth surface $ \Gamma $ without self-intersections) containing a $ ( k- 1) $-dimensional subdomain $ \sigma $ of a $ ( k- 1) $-dimensional hyperplane $ L $. If the function $ U( x _ {1}, \dots, x _ {k} ) $ is harmonic in $ G $, continuous on $ G \cup \sigma $ and equal to zero everywhere on $ \sigma $, then $ U( x _ {1}, \dots, x _ {k} ) $ can be extended as a harmonic function across $ \sigma $ into the domain $ G ^ {*} $ that is symmetric to $ G $ relative to $ L $, by means of the equality
$$ U( x _ {1} ^ {*}, \dots, x _ {k} ^ {*} ) = - U( x _ {1}, \dots, x _ {k} ), $$
where the points $ ( x _ {1} ^ {*}, \dots, x _ {k} ^ {*} ) \in G ^ {*} $ and $ ( x _ {1}, \dots, x _ {k} ) \in G $ are symmetric relative to $ L $.
2) Let $ G $ be a domain of a $ k $-dimensional Euclidean space $ ( k \geq 1) $ that is bounded by a Jordan surface $ \Gamma $ containing a $ ( k- 1) $-dimensional subdomain $ \sigma $ of a $ ( k- 1) $-dimensional sphere $ \Sigma $ of radius $ R > 0 $ with centre at a point $ M ^ {0} = ( x _ {1} ^ {0}, \dots, x _ {k} ^ {0} ) $. If $ U( x _ {1}, \dots, x _ {k} ) $ is harmonic in $ G $, continuous on $ G \cup \sigma $ and equal to zero everywhere on $ \sigma $, then $ U( x _ {1}, \dots, x _ {k} ) $ can be extended as a harmonic function across $ \sigma $ into the domain $ G ^ {*} $ that is symmetric to $ G $ relative to $ \Sigma $ (i.e. obtained from $ G $ by means of the transformation of inverse radii — inversions — relative to $ \Sigma $). This continuation is achieved by means of the Kelvin transformation, taken with the opposite sign, of $ U $ relative to $ \Sigma $, namely:
$$ U( x _ {1} ^ {*}, \dots, x _ {k} ^ {*} ) = $$
$$ = \ - \frac{R ^ {k- 2} }{r ^ {k- 2} } U \left ( x _ {1} ^ {0} + R ^ {2} \frac{x _ {1} ^ {*} - x _ {1} ^ {0} }{r ^ {2} } , \dots, x _ {k} ^ {0} + R ^ {2} \frac{x _ {k} ^ {*} - x _ {k} ^ {0} }{r ^ {2} } \right ) , $$
where $ ( x _ {1} ^ {*}, \dots, x _ {k} ^ {*} ) \in G ^ {*} $, $ r = \sqrt {( x _ {1} ^ {*} - x _ {1} ^ {0} ) ^ {2} + \cdots + ( x _ {k} ^ {*} - x _ {k} ^ {0} ) ^ {2} } $. Under the transformation of inverse radii relative to $ \Sigma $, the point $ M ^ {*} = ( x _ {1} ^ {*}, \dots, x _ {k} ^ {*} ) $ is mapped to the point $ M( x _ {1}, \dots, x _ {k} ) $, in correspondence with
$$ x _ {1} - x _ {1} ^ {0} = R ^ {2} \frac{x _ {1} ^ {*} - x _ {1} ^ {0} }{r ^ {2} } , \dots, x _ {k} - x _ {k} ^ {0} = \ R ^ {2} \frac{x _ {k} ^ {*} - x _ {k} ^ {0} }{r ^ {2} } , $$
such that if $ M ^ {*} \in G ^ {*} $, then $ M $ belongs to the domain $ G $ (where $ U $ is given), and if $ M ^ {*} \in \sigma $, then $ M = M ^ {*} $.
References
[1] | R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 2 , Interscience (1965) (Translated from German) |
Comments
In the non-Soviet literature, "reflection principle" refers also to the Riemann–Schwarz principle and its generalizations to $ \mathbf C ^ {n} $.
Cf. also Schwarz symmetry theorem.
Reflection principle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reflection_principle&oldid=48471