Namespaces
Variants
Actions

Difference between revisions of "Recursive predicate"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 17: Line 17:
 
$$  
 
$$  
 
f( x _ {1} \dots x _ {n} )  =  \left \{
 
f( x _ {1} \dots x _ {n} )  =  \left \{
 +
 +
\begin{array}{ll}
 +
1  & \textrm{ if }  P( x _ {1} \dots x _ {n} )  \textrm{ is  true  },  \\
 +
0  & \textrm{ if }  P( x _ {1} \dots x _ {n} )  \textrm{ is  false  } ,  \\
 +
\end{array}
 +
 +
\right .$$
  
 
is a [[Recursive function|recursive function]].
 
is a [[Recursive function|recursive function]].

Latest revision as of 14:55, 7 June 2020


A predicate $ P( x _ {1} \dots x _ {n} ) $ defined on the natural numbers, such that the function $ f $ defined on the natural numbers by the condition

$$ f( x _ {1} \dots x _ {n} ) = \left \{ \begin{array}{ll} 1 & \textrm{ if } P( x _ {1} \dots x _ {n} ) \textrm{ is true }, \\ 0 & \textrm{ if } P( x _ {1} \dots x _ {n} ) \textrm{ is false } , \\ \end{array} \right .$$

is a recursive function.

How to Cite This Entry:
Recursive predicate. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Recursive_predicate&oldid=48459
This article was adapted from an original article by V.E. Plisko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article