Difference between revisions of "Ostrogradski method"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (remove linebreak in eqn) |
||
Line 19: | Line 19: | ||
$$ \tag{1 } | $$ \tag{1 } | ||
− | Q( x) = ( x - a _ {1} ) ^ {\alpha _ {1} } \ | + | Q( x) = ( x - a _ {1} ) ^ {\alpha _ {1} } \cdots ( x - a _ {r} ) ^ {\alpha _ {r} } |
− | + | ( x ^ {2} + p _ {1} x + q _ {1} ) ^ {\beta _ {1} } \cdots | |
− | |||
− | |||
− | |||
− | ( x ^ {2} + p _ {1} x + q _ {1} ) ^ {\beta _ {1} } \ | ||
( x ^ {2} + p _ {s} x + q _ {s} ) ^ {\beta _ {s} } , | ( x ^ {2} + p _ {s} x + q _ {s} ) ^ {\beta _ {s} } , | ||
$$ | $$ | ||
Line 32: | Line 28: | ||
$ \alpha _ {i} $ | $ \alpha _ {i} $ | ||
and $ \beta _ {j} $ | and $ \beta _ {j} $ | ||
− | are natural numbers, $ i = 1 \dots r $, | + | are natural numbers, $ i = 1, \dots, r $, |
− | $ j = 1 \dots s $, | + | $ j = 1, \dots, s $, |
and let | and let | ||
Line 39: | Line 35: | ||
\left . \begin{array}{c} | \left . \begin{array}{c} | ||
− | Q _ {1} ( x) = ( x - a _ {1} ) ^ {\alpha _ {1} - 1 } \ | + | Q _ {1} ( x) = ( x - a _ {1} ) ^ {\alpha _ {1} - 1 } \cdots ( x - a _ {r} ) ^ {\alpha _ {r} - 1 } ( x ^ {2} + p _ {1} x + q _ {1} ) ^ {\beta _ {1} - 1 } \cdots ( x ^ {2} + p _ {s} x + q _ {s} ) ^ {\beta _ {s} - 1 } , |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
\\ | \\ | ||
− | \ | + | Q _ {2} ( x) = ( x - a _ {1} ) \cdots ( x - a _ {r} ) ( x ^ {2} + p _ {1} x + q _ {1} ) \cdots ( x ^ {2} + p _ {s} x + q _ {s} ). |
\end{array} | \end{array} | ||
Line 63: | Line 53: | ||
$$ \tag{3 } | $$ \tag{3 } | ||
− | \int\limits | + | \int\limits |
− | \frac{x)}{Q( | + | \frac{P(x)}{Q(x)} dx = \ |
− | |||
\frac{P _ {1} ( x) }{Q _ {1} ( x) } | \frac{P _ {1} ( x) }{Q _ {1} ( x) } |
Latest revision as of 15:56, 2 March 2022
A method for isolating the algebraic part in indefinite integrals of rational functions. Let $ P( x) $
and $ Q( x) $
be polynomials with real coefficients, let the degree of $ P( x) $
be less than the degree of $ Q( x) $,
so that $ P( x)/Q( x) $
is a proper fraction, let
$$ \tag{1 } Q( x) = ( x - a _ {1} ) ^ {\alpha _ {1} } \cdots ( x - a _ {r} ) ^ {\alpha _ {r} } ( x ^ {2} + p _ {1} x + q _ {1} ) ^ {\beta _ {1} } \cdots ( x ^ {2} + p _ {s} x + q _ {s} ) ^ {\beta _ {s} } , $$
where $ a _ {i} , p _ {j} , q _ {j} $ are real numbers, $ ( p _ {j} ^ {2} /4)- q _ {j} < 0 $, $ \alpha _ {i} $ and $ \beta _ {j} $ are natural numbers, $ i = 1, \dots, r $, $ j = 1, \dots, s $, and let
$$ \tag{2 } \left . \begin{array}{c} Q _ {1} ( x) = ( x - a _ {1} ) ^ {\alpha _ {1} - 1 } \cdots ( x - a _ {r} ) ^ {\alpha _ {r} - 1 } ( x ^ {2} + p _ {1} x + q _ {1} ) ^ {\beta _ {1} - 1 } \cdots ( x ^ {2} + p _ {s} x + q _ {s} ) ^ {\beta _ {s} - 1 } , \\ Q _ {2} ( x) = ( x - a _ {1} ) \cdots ( x - a _ {r} ) ( x ^ {2} + p _ {1} x + q _ {1} ) \cdots ( x ^ {2} + p _ {s} x + q _ {s} ). \end{array} \right \} $$
Then real polynomials $ P _ {1} ( x) $ and $ P _ {2} ( x) $ exist, the degrees of which are respectively less than the degrees $ n _ {1} $ and $ n _ {2} = r + 2s $ of the polynomials $ Q _ {1} ( x) $ and $ Q _ {2} ( x) $, such that
$$ \tag{3 } \int\limits \frac{P(x)}{Q(x)} dx = \ \frac{P _ {1} ( x) }{Q _ {1} ( x) } + \int\limits \frac{P _ {2} ( x) }{Q _ {2} ( x) } dx. $$
It is important that the polynomials $ Q _ {1} ( x) $ and $ Q _ {2} ( x) $ can be found without knowing the decomposition (1) of the polynomial $ Q( x) $ into irreducible factors: The polynomial $ Q _ {1} ( x) $ is the greatest common divisor of the polynomial $ Q( x) $ and its derivative $ Q ^ \prime ( x) $ and can be obtained using the Euclidean algorithm, while $ Q _ {2} ( x) = Q( x)/Q _ {1} ( x) $. The coefficients of the polynomials $ P _ {1} ( x) $ and $ P _ {2} ( x) $ can be calculated using the method of indefinite coefficients (cf. Undetermined coefficients, method of). The Ostrogradski method reduces the problem of the integration of a real rational fraction to the integration of a rational fraction whose denominator has only simple roots; the integral of such a fraction is expressed through transcendental functions: logarithms and arctangents. Consequently, the rational fraction $ P _ {1} ( x)/Q _ {1} ( x) $ in formula (3) is the algebraic part of the indefinite integral $ \int P( x)/Q( x) dx $.
The method was first published in 1845 by M.V. Ostrogradski (see ).
References
[1a] | M.V. Ostrogradski, Bull. Sci. Acad. Sci. St. Petersburg , 4 : 10–11 (1845) pp. 145–167 |
[1b] | M.V. Ostrogradski, Bull. Sci. Acad. Sci. St. Petersburg , 4 : 18–19 (1845) pp. 286–300 |
Ostrogradski method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ostrogradski_method&oldid=48088