Namespaces
Variants
Actions

Difference between revisions of "Integral representations of linear operators"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fixing spaces)
 
Line 13: Line 13:
 
Let 
 
Let    ( X, \Lambda, \mu )
 
and    ( Y, \Sigma, \nu )
 
and    ( Y, \Sigma, \nu )
be    \sigma -
+
be    \sigma -finite measure spaces (cf. [[Measure space|Measure space]]) and let    L _ {0} ( X, \mu )
finite measure spaces (cf. [[Measure space|Measure space]]) and let    L _ {0} ( X, \mu )
 
 
and    L _ {0} ( Y, \nu )
 
and    L _ {0} ( Y, \nu )
be the spaces of the complex-valued    \mu -
+
be the spaces of the complex-valued    \mu -measurable functions on    X
measurable functions on    X
+
and the complex-valued    \nu -measurable functions on    Y ,  
and the complex-valued    \nu -
 
measurable functions on    Y ,  
 
 
respectively. A linear subspace    E = E ( X, \mu )
 
respectively. A linear subspace    E = E ( X, \mu )
 
of    L _ {0} ( X, \mu )
 
of    L _ {0} ( X, \mu )
Line 26: Line 23:
 
  g \in E
 
  g \in E
 
and    | f | \leq  | g | ,  
 
and    | f | \leq  | g | ,  
  \mu -
+
  \mu -a.e., imply    f \in E .  
a.e., imply    f \in E .  
+
The classical    L _ {p} -spaces (   1 \leq  p \leq  \infty ),  
The classical    L _ {p} -
 
spaces (   1 \leq  p \leq  \infty ),  
 
 
the Orlicz spaces and, more generally, Banach function spaces (cf. also [[Orlicz space|Orlicz space]]; [[Banach space|Banach space]]) are typical examples of normed ideal spaces.
 
the Orlicz spaces and, more generally, Banach function spaces (cf. also [[Orlicz space|Orlicz space]]; [[Banach space|Banach space]]) are typical examples of normed ideal spaces.
  
Line 39: Line 34:
 
the linear space of all linear operators from    E
 
the linear space of all linear operators from    E
 
into    F ,  
 
into    F ,  
is called an integral operator, kernel operator, if there exists a    ( \mu \times \nu ) -
+
is called an integral operator, kernel operator, if there exists a    ( \mu \times \nu ) -measurable function    T = T ( x,y ) ,  
measurable function    T = T ( x,y ) ,  
 
 
  ( x,y ) \in X \times Y ,  
 
  ( x,y ) \in X \times Y ,  
 
such that for all    f \in E
 
such that for all    f \in E
and    \mu -
+
and    \mu -a.e. with respect to    x ,  
a.e. with respect to    x ,  
 
 
  ( Tf ) ( x ) = \int _ {Y} {T ( x,y ) f ( y ) }  {d \nu ( y ) } .
 
  ( Tf ) ( x ) = \int _ {Y} {T ( x,y ) f ( y ) }  {d \nu ( y ) } .
  
Line 55: Line 48:
 
  T \in {\mathcal L} ( E,F )
 
  T \in {\mathcal L} ( E,F )
 
is called a positive linear operator if for all    0 \leq  f \in E
 
is called a positive linear operator if for all    0 \leq  f \in E
one has    T f \geq  0 (
+
one has    T f \geq  0 (  \mu -a.e.). An integral operator    T
  \mu -
+
with kernel    T ( x,y ) (  ( x,y ) \in X \times Y )  
a.e.). An integral operator    T
 
with kernel    T ( x,y ) (
 
  ( x,y ) \in X \times Y )  
 
 
is positive if and only if    T ( x,y ) \geq  0 ,  
 
is positive if and only if    T ( x,y ) \geq  0 ,  
  ( \mu \times \nu ) -
+
  ( \mu \times \nu ) -a.e.;    T \in {\mathcal L} ( E,F )
a.e.;    T \in {\mathcal L} ( E,F )
 
 
is called regular if    T
 
is called regular if    T
 
maps order-bounded sets into order-bounded sets, i.e., for all    f \in E
 
maps order-bounded sets into order-bounded sets, i.e., for all    f \in E
Line 82: Line 71:
 
into    F .  
 
into    F .  
 
In that case, the kernel of    | T |
 
In that case, the kernel of    | T |
is given by the modulus    | {T ( x,y ) } | (
+
is given by the modulus    | {T ( x,y ) } | (  ( x,y ) \in X \times Y )  
  ( x,y ) \in X \times Y )  
 
 
of the kernel of    T .
 
of the kernel of    T .
  
Line 89: Line 77:
  
 
Integral operators can be characterized via a continuity property:    T \in {\mathcal L} ( E,F )
 
Integral operators can be characterized via a continuity property:    T \in {\mathcal L} ( E,F )
is a linear integral operator if and only if    0 \leq  f _ {n} \leq  f \in E (
+
is a linear integral operator if and only if    0 \leq  f _ {n} \leq  f \in E (  n = 1,2, \dots )  
  n = 1,2, \dots )  
 
 
and    f _ {n} \rightarrow 0
 
and    f _ {n} \rightarrow 0
in    \nu -
+
in    \nu -measure as    n \rightarrow \infty
measure as    n \rightarrow \infty
+
imply    Tf _ {n} \rightarrow 0 (  \mu -a.e.) as    n \rightarrow \infty .
imply    Tf _ {n} \rightarrow 0 (
 
  \mu -
 
a.e.) as    n \rightarrow \infty .
 
  
An earlier version of this theorem for bilinear forms is due to H. Nakano [[#References|[a4]]]. For regular linear operators defined on KB-spaces (cf. also [[K-space|   K -
+
An earlier version of this theorem for bilinear forms is due to H. Nakano [[#References|[a4]]]. For regular linear operators defined on KB-spaces (cf. also [[K-space|   K -space]]), the result appeared in a slightly different form in a paper by G.Ya. Lozonovskii [[#References|[a3]]]. The present version is due to A.V. Bukhvalov [[#References|[a1]]]. A pure measure-theoretic proof and related results were given by A. Schep [[#References|[a6]]]. For details and further results see [[#References|[a2]]].
space]]), the result appeared in a slightly different form in a paper by G.Ya. Lozonovskii [[#References|[a3]]]. The present version is due to A.V. Bukhvalov [[#References|[a1]]]. A pure measure-theoretic proof and related results were given by A. Schep [[#References|[a6]]]. For details and further results see [[#References|[a2]]].
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.V. Bukhvalov,  "A criterion for integral representability of linear operators"  ''Funktsional. Anal. i Prilozhen.'' , '''9''' :  1  (1975)  pp. 51  (In Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  "Vector lattices and integral operators"  S.S. Kutateladze (ed.) , ''Mathematics and its Applications'' , '''358''' , Kluwer Acad. Publ.  (1996)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  G.Ya. Lozanovsky,  "On almost integral operators in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008081.png" />-spaces"  ''Vestnik Leningrad Gos. Univ.'' , '''7'''  (1966)  pp. 35–44  (In Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  H. Nakano,  "Product spaces of semi-ordered linear spaces"  ''J. Fac. Sci. Hokkaidô Univ. Ser. I'' , '''12''' :  3  (1953)  pp. 163–210</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  J. von Neumann,  "Charakterisierung des Spektrums eines Integraloperators" , ''Actualités Sc. et Industr.'' , '''229''' , Hermann  (1935)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  A.R. Schep,  "Kernel operators"  ''Proc. Kon. Nederl. Akad. Wetensch.'' , '''A 82'''  (1979)  pp. 39–53</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.V. Bukhvalov,  "A criterion for integral representability of linear operators"  ''Funktsional. Anal. i Prilozhen.'' , '''9''' :  1  (1975)  pp. 51  (In Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  "Vector lattices and integral operators"  S.S. Kutateladze (ed.) , ''Mathematics and its Applications'' , '''358''' , Kluwer Acad. Publ.  (1996)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  G.Ya. Lozanovsky,  "On almost integral operators in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008081.png" />-spaces"  ''Vestnik Leningrad Gos. Univ.'' , '''7'''  (1966)  pp. 35–44  (In Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  H. Nakano,  "Product spaces of semi-ordered linear spaces"  ''J. Fac. Sci. Hokkaidô Univ. Ser. I'' , '''12''' :  3  (1953)  pp. 163–210</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  J. von Neumann,  "Charakterisierung des Spektrums eines Integraloperators" , ''Actualités Sc. et Industr.'' , '''229''' , Hermann  (1935)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  A.R. Schep,  "Kernel operators"  ''Proc. Kon. Nederl. Akad. Wetensch.'' , '''A 82'''  (1979)  pp. 39–53</TD></TR></table>

Latest revision as of 16:51, 19 February 2022


Let ( X, \Lambda, \mu ) and ( Y, \Sigma, \nu ) be \sigma -finite measure spaces (cf. Measure space) and let L _ {0} ( X, \mu ) and L _ {0} ( Y, \nu ) be the spaces of the complex-valued \mu -measurable functions on X and the complex-valued \nu -measurable functions on Y , respectively. A linear subspace E = E ( X, \mu ) of L _ {0} ( X, \mu ) is called an ideal space, or a solid linear subspace, of L _ {0} if f \in L _ {0} , g \in E and | f | \leq | g | , \mu -a.e., imply f \in E . The classical L _ {p} -spaces ( 1 \leq p \leq \infty ), the Orlicz spaces and, more generally, Banach function spaces (cf. also Orlicz space; Banach space) are typical examples of normed ideal spaces.

If E , F are ideal spaces contained in L _ {0} ( Y, \nu ) and L _ {0} ( X, \mu ) , respectively, then T \in {\mathcal L} ( E,F ) , the linear space of all linear operators from E into F , is called an integral operator, kernel operator, if there exists a ( \mu \times \nu ) -measurable function T = T ( x,y ) , ( x,y ) \in X \times Y , such that for all f \in E and \mu -a.e. with respect to x , ( Tf ) ( x ) = \int _ {Y} {T ( x,y ) f ( y ) } {d \nu ( y ) } .

Integral operators, also known as integral transforms, play an important role in analysis. It is a natural question to ask: Which T \in {\mathcal L} ( E,F ) are integral operators? J. von Neumann [a5] was the first to show that for the ideal spaces E = F = L _ {2} ( [ 0,1 ] ) the identity operator does not admit an integral representation. He proved, however, that a bounded self-adjoint linear operator T \in {\mathcal L} ( L _ {2} , L _ {2} ) is unitarily equivalent (cf. also Unitarily-equivalent operators) to an integral operator if and only if 0 is an element of the limit spectrum of T .

T \in {\mathcal L} ( E,F ) is called a positive linear operator if for all 0 \leq f \in E one has T f \geq 0 ( \mu -a.e.). An integral operator T with kernel T ( x,y ) ( ( x,y ) \in X \times Y ) is positive if and only if T ( x,y ) \geq 0 , ( \mu \times \nu ) -a.e.; T \in {\mathcal L} ( E,F ) is called regular if T maps order-bounded sets into order-bounded sets, i.e., for all f \in E there exists a g \in F such that for all h \in E satisfying | h | \leq | f | , one has | {Th } | \leq g ; T \in {\mathcal L} ( E,F ) is ordered bounded if and only if T can be written as the difference of two positive linear operators if and only if its modulus | T | , where for all 0 \leq f \in E , | T | ( f ) = \sup \{ {| {Tg } | } : {| g | \leq f } \} , is a positive linear operator mapping E into F .

The following theorem holds: An integral operator T \in {\mathcal L} ( E,F ) is regular if and only if its modulus | T | is a positive linear operator mapping E into F . In that case, the kernel of | T | is given by the modulus | {T ( x,y ) } | ( ( x,y ) \in X \times Y ) of the kernel of T .

An integral transform need not be regular, as is shown, for instance, by the Fourier transform and the Hilbert transform.

Integral operators can be characterized via a continuity property: T \in {\mathcal L} ( E,F ) is a linear integral operator if and only if 0 \leq f _ {n} \leq f \in E ( n = 1,2, \dots ) and f _ {n} \rightarrow 0 in \nu -measure as n \rightarrow \infty imply Tf _ {n} \rightarrow 0 ( \mu -a.e.) as n \rightarrow \infty .

An earlier version of this theorem for bilinear forms is due to H. Nakano [a4]. For regular linear operators defined on KB-spaces (cf. also K -space), the result appeared in a slightly different form in a paper by G.Ya. Lozonovskii [a3]. The present version is due to A.V. Bukhvalov [a1]. A pure measure-theoretic proof and related results were given by A. Schep [a6]. For details and further results see [a2].

References

[a1] A.V. Bukhvalov, "A criterion for integral representability of linear operators" Funktsional. Anal. i Prilozhen. , 9 : 1 (1975) pp. 51 (In Russian)
[a2] "Vector lattices and integral operators" S.S. Kutateladze (ed.) , Mathematics and its Applications , 358 , Kluwer Acad. Publ. (1996)
[a3] G.Ya. Lozanovsky, "On almost integral operators in -spaces" Vestnik Leningrad Gos. Univ. , 7 (1966) pp. 35–44 (In Russian)
[a4] H. Nakano, "Product spaces of semi-ordered linear spaces" J. Fac. Sci. Hokkaidô Univ. Ser. I , 12 : 3 (1953) pp. 163–210
[a5] J. von Neumann, "Charakterisierung des Spektrums eines Integraloperators" , Actualités Sc. et Industr. , 229 , Hermann (1935)
[a6] A.R. Schep, "Kernel operators" Proc. Kon. Nederl. Akad. Wetensch. , A 82 (1979) pp. 39–53
How to Cite This Entry:
Integral representations of linear operators. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_representations_of_linear_operators&oldid=47381
This article was adapted from an original article by W. Luxemburg (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article