Namespaces
Variants
Actions

Difference between revisions of "Optional sigma-algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (wikilink)
m (tex encoded by computer)
 
Line 1: Line 1:
''optional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o0685702.png" />-algebra''
+
<!--
 +
o0685702.png
 +
$#A+1 = 23 n = 0
 +
$#C+1 = 23 : ~/encyclopedia/old_files/data/O068/O.0608570 Optional sigma\AAhalgebra,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The smallest <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o0685703.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o0685704.png" /> of sets (cf. [[Algebra of sets|Algebra of sets]]) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o0685705.png" /> generated by all mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o0685706.png" /> of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o0685707.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o0685708.png" /> which (for every fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o0685709.png" />) are continuous from the right (in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o06857010.png" />), have limits from the left and are adapted to a (given) non-decreasing family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o06857011.png" /> of sub-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o06857012.png" />-algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o06857013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o06857014.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o06857015.png" /> is a measurable space. The optional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o06857016.png" />-algebra coincides with the smallest <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o06857017.png" />-algebra generated by the [[stochastic interval]]s <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o06857018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o06857019.png" /> are stopping times (relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o06857020.png" />) (cf. [[Markov moment|Markov moment]]). The inclusion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o06857021.png" /> holds between the optional and predictable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o06857022.png" />-algebras (cf. [[Predictable sigma-algebra|Predictable sigma-algebra]]).
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
''optional  $  \sigma $-
 +
algebra''
 +
 
 +
The smallest $  \sigma $-
 +
algebra $  {\mathcal O} = {\mathcal O} ( \mathbf F ) $
 +
of sets (cf. [[Algebra of sets|Algebra of sets]]) in $  \Omega \times \mathbf R _ {+} = \{ {( \omega , t) } : {\omega \in \Omega,  t \geq  0 } \} $
 +
generated by all mappings $  ( \omega , t) \rightarrow f( \omega , t) $
 +
of the set $  \Omega \times \mathbf R _ {+} $
 +
into $  \mathbf R $
 +
which (for every fixed $  \omega \in \Omega $)  
 +
are continuous from the right (in $  t $),  
 +
have limits from the left and are adapted to a (given) non-decreasing family $  \mathbf F = ( F _ {t} ) _ {t \geq  0 }  $
 +
of sub- $  \sigma $-
 +
algebras $  F _ {t} \subseteq F $,  
 +
$  t \geq  0 $,  
 +
where $  ( \Omega , F  ) $
 +
is a measurable space. The optional $  \sigma $-
 +
algebra coincides with the smallest $  \sigma $-
 +
algebra generated by the [[stochastic interval]]s $  [ 0, \tau ] = \{ {( \omega , t) } : {0 \leq  t < \tau ( \omega ) } \} $,  
 +
where $  \tau = \tau ( \omega ) $
 +
are stopping times (relative to $  \mathbf F = ( F _ {t} ) _ {t \geq  0 }  $)  
 +
(cf. [[Markov moment|Markov moment]]). The inclusion $  {\mathcal P} ( \mathbf F ) \subseteq {\mathcal O} ( \mathbf F ) $
 +
holds between the optional and predictable $  \sigma $-
 +
algebras (cf. [[Predictable sigma-algebra|Predictable sigma-algebra]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C. Dellacherie,  "Capacités et processus stochastiques" , Springer  (1972)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C. Dellacherie,  "Capacités et processus stochastiques" , Springer  (1972)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
In [[#References|[a1]]] the optional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o06857023.png" />-field is called the well-measurable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068570/o06857025.png" />-field.
+
In [[#References|[a1]]] the optional $  \sigma $-
 +
field is called the well-measurable $  \sigma $-
 +
field.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Dellacherie,  P.A. Meyer,  "Probabilities and potential" , '''A''' , North-Holland  (1978)  (Translated from French)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Dellacherie,  P.A. Meyer,  "Probabilities and potential" , '''A''' , North-Holland  (1978)  (Translated from French)</TD></TR></table>

Latest revision as of 08:04, 6 June 2020


optional $ \sigma $- algebra

The smallest $ \sigma $- algebra $ {\mathcal O} = {\mathcal O} ( \mathbf F ) $ of sets (cf. Algebra of sets) in $ \Omega \times \mathbf R _ {+} = \{ {( \omega , t) } : {\omega \in \Omega, t \geq 0 } \} $ generated by all mappings $ ( \omega , t) \rightarrow f( \omega , t) $ of the set $ \Omega \times \mathbf R _ {+} $ into $ \mathbf R $ which (for every fixed $ \omega \in \Omega $) are continuous from the right (in $ t $), have limits from the left and are adapted to a (given) non-decreasing family $ \mathbf F = ( F _ {t} ) _ {t \geq 0 } $ of sub- $ \sigma $- algebras $ F _ {t} \subseteq F $, $ t \geq 0 $, where $ ( \Omega , F ) $ is a measurable space. The optional $ \sigma $- algebra coincides with the smallest $ \sigma $- algebra generated by the stochastic intervals $ [ 0, \tau ] = \{ {( \omega , t) } : {0 \leq t < \tau ( \omega ) } \} $, where $ \tau = \tau ( \omega ) $ are stopping times (relative to $ \mathbf F = ( F _ {t} ) _ {t \geq 0 } $) (cf. Markov moment). The inclusion $ {\mathcal P} ( \mathbf F ) \subseteq {\mathcal O} ( \mathbf F ) $ holds between the optional and predictable $ \sigma $- algebras (cf. Predictable sigma-algebra).

References

[1] C. Dellacherie, "Capacités et processus stochastiques" , Springer (1972)

Comments

In [a1] the optional $ \sigma $- field is called the well-measurable $ \sigma $- field.

References

[a1] C. Dellacherie, P.A. Meyer, "Probabilities and potential" , A , North-Holland (1978) (Translated from French)
How to Cite This Entry:
Optional sigma-algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Optional_sigma-algebra&oldid=39354
This article was adapted from an original article by A.N. Shiryaev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article