Difference between revisions of "Predictable sigma-algebra"
m (wikilink) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0744102.png | ||
+ | $#A+1 = 30 n = 0 | ||
+ | $#C+1 = 30 : ~/encyclopedia/old_files/data/P074/P.0704410 Predictable sigma\AAhalgebra, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''predictable $ \sigma $- | |
+ | algebra'' | ||
− | + | The least $ \sigma $- | |
+ | algebra $ {\mathcal P} = {\mathcal P} ( \mathbf F ) $ | ||
+ | of sets in | ||
− | + | $$ | |
+ | \Omega \times \mathbf R _ {+} = \ | ||
+ | \{ {( \omega , t) } : {\omega \in \Omega , t \geq 0 } \} | ||
+ | $$ | ||
− | + | generated by all mappings $ ( \omega , t) \rightarrow f ( \omega , t) $ | |
+ | of the set $ \Omega \times \mathbf R _ {+} $ | ||
+ | into $ \mathbf R $ | ||
+ | that are (for each fixed $ \omega \in \Omega $) | ||
+ | continuous from the left (in $ t $) | ||
+ | and $ \mathbf F $- | ||
+ | adapted to a non-decreasing family $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t \geq 0 } $ | ||
+ | of sub- $ \sigma $- | ||
+ | algebras $ {\mathcal F} _ {t} \subseteq {\mathcal F} $, | ||
+ | $ t \geq 0 $, | ||
+ | where $ ( \Omega , {\mathcal F} ) $ | ||
+ | is a measurable space. A predictable $ \sigma $- | ||
+ | algebra can be generated by any of the following families of sets: | ||
− | + | 1) $ A \times \{ 0 \} $, | |
+ | where $ A \in {\mathcal F} _ {0} $ | ||
+ | and $ [[ 0, \tau ]] $, | ||
+ | where $ \tau $ | ||
+ | is a stopping time (cf. [[Markov moment|Markov moment]]) and $ [[ 0, \tau ]] $ | ||
+ | a [[stochastic interval]]; | ||
+ | |||
+ | 2) $ A \times \{ 0 \} $, | ||
+ | where $ A \in {\mathcal F} _ {0} $, | ||
+ | and $ A \times ( s, t] $, | ||
+ | where $ s < t $ | ||
+ | and $ A \in {\mathcal F} _ {s} $. | ||
+ | |||
+ | Between optional $ \sigma $- | ||
+ | algebras (cf. [[Optional sigma-algebra|Optional sigma-algebra]]) and predictable $ \sigma $- | ||
+ | algebras there is the relation $ {\mathcal P} ( \mathbf F ) \subseteq {\mathcal O} ( \mathbf F ) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Dellacherie, "Capacités et processus stochastique" , Springer (1972)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Dellacherie, "Capacités et processus stochastique" , Springer (1972)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | Instead of "(s-) algebra" one more often uses ( | + | Instead of "(s-) algebra" one more often uses ( $ \sigma $-) |
+ | field. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Dellacherie, P.A. Meyer, "Probabilities and potential" , '''A-C''' , North-Holland (1978–1988) (Translated from French)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Dellacherie, P.A. Meyer, "Probabilities and potential" , '''A-C''' , North-Holland (1978–1988) (Translated from French)</TD></TR></table> |
Latest revision as of 08:07, 6 June 2020
predictable $ \sigma $-
algebra
The least $ \sigma $- algebra $ {\mathcal P} = {\mathcal P} ( \mathbf F ) $ of sets in
$$ \Omega \times \mathbf R _ {+} = \ \{ {( \omega , t) } : {\omega \in \Omega , t \geq 0 } \} $$
generated by all mappings $ ( \omega , t) \rightarrow f ( \omega , t) $ of the set $ \Omega \times \mathbf R _ {+} $ into $ \mathbf R $ that are (for each fixed $ \omega \in \Omega $) continuous from the left (in $ t $) and $ \mathbf F $- adapted to a non-decreasing family $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t \geq 0 } $ of sub- $ \sigma $- algebras $ {\mathcal F} _ {t} \subseteq {\mathcal F} $, $ t \geq 0 $, where $ ( \Omega , {\mathcal F} ) $ is a measurable space. A predictable $ \sigma $- algebra can be generated by any of the following families of sets:
1) $ A \times \{ 0 \} $, where $ A \in {\mathcal F} _ {0} $ and $ [[ 0, \tau ]] $, where $ \tau $ is a stopping time (cf. Markov moment) and $ [[ 0, \tau ]] $ a stochastic interval;
2) $ A \times \{ 0 \} $, where $ A \in {\mathcal F} _ {0} $, and $ A \times ( s, t] $, where $ s < t $ and $ A \in {\mathcal F} _ {s} $.
Between optional $ \sigma $- algebras (cf. Optional sigma-algebra) and predictable $ \sigma $- algebras there is the relation $ {\mathcal P} ( \mathbf F ) \subseteq {\mathcal O} ( \mathbf F ) $.
References
[1] | C. Dellacherie, "Capacités et processus stochastique" , Springer (1972) |
Comments
Instead of "(s-) algebra" one more often uses ( $ \sigma $-) field.
References
[a1] | C. Dellacherie, P.A. Meyer, "Probabilities and potential" , A-C , North-Holland (1978–1988) (Translated from French) |
Predictable sigma-algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Predictable_sigma-algebra&oldid=39353