Difference between revisions of "Predictable sigma-algebra"
m (wikilink) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | p0744102.png | ||
| + | $#A+1 = 30 n = 0 | ||
| + | $#C+1 = 30 : ~/encyclopedia/old_files/data/P074/P.0704410 Predictable sigma\AAhalgebra, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | ''predictable $ \sigma $- | |
| + | algebra'' | ||
| − | + | The least $ \sigma $- | |
| + | algebra $ {\mathcal P} = {\mathcal P} ( \mathbf F ) $ | ||
| + | of sets in | ||
| − | + | $$ | |
| + | \Omega \times \mathbf R _ {+} = \ | ||
| + | \{ {( \omega , t) } : {\omega \in \Omega , t \geq 0 } \} | ||
| + | $$ | ||
| − | + | generated by all mappings $ ( \omega , t) \rightarrow f ( \omega , t) $ | |
| + | of the set $ \Omega \times \mathbf R _ {+} $ | ||
| + | into $ \mathbf R $ | ||
| + | that are (for each fixed $ \omega \in \Omega $) | ||
| + | continuous from the left (in $ t $) | ||
| + | and $ \mathbf F $- | ||
| + | adapted to a non-decreasing family $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t \geq 0 } $ | ||
| + | of sub- $ \sigma $- | ||
| + | algebras $ {\mathcal F} _ {t} \subseteq {\mathcal F} $, | ||
| + | $ t \geq 0 $, | ||
| + | where $ ( \Omega , {\mathcal F} ) $ | ||
| + | is a measurable space. A predictable $ \sigma $- | ||
| + | algebra can be generated by any of the following families of sets: | ||
| − | + | 1) $ A \times \{ 0 \} $, | |
| + | where $ A \in {\mathcal F} _ {0} $ | ||
| + | and $ [[ 0, \tau ]] $, | ||
| + | where $ \tau $ | ||
| + | is a stopping time (cf. [[Markov moment|Markov moment]]) and $ [[ 0, \tau ]] $ | ||
| + | a [[stochastic interval]]; | ||
| + | |||
| + | 2) $ A \times \{ 0 \} $, | ||
| + | where $ A \in {\mathcal F} _ {0} $, | ||
| + | and $ A \times ( s, t] $, | ||
| + | where $ s < t $ | ||
| + | and $ A \in {\mathcal F} _ {s} $. | ||
| + | |||
| + | Between optional $ \sigma $- | ||
| + | algebras (cf. [[Optional sigma-algebra|Optional sigma-algebra]]) and predictable $ \sigma $- | ||
| + | algebras there is the relation $ {\mathcal P} ( \mathbf F ) \subseteq {\mathcal O} ( \mathbf F ) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Dellacherie, "Capacités et processus stochastique" , Springer (1972)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Dellacherie, "Capacités et processus stochastique" , Springer (1972)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | Instead of "(s-) algebra" one more often uses ( | + | Instead of "(s-) algebra" one more often uses ( $ \sigma $-) |
| + | field. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Dellacherie, P.A. Meyer, "Probabilities and potential" , '''A-C''' , North-Holland (1978–1988) (Translated from French)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Dellacherie, P.A. Meyer, "Probabilities and potential" , '''A-C''' , North-Holland (1978–1988) (Translated from French)</TD></TR></table> | ||
Latest revision as of 08:07, 6 June 2020
predictable $ \sigma $-
algebra
The least $ \sigma $- algebra $ {\mathcal P} = {\mathcal P} ( \mathbf F ) $ of sets in
$$ \Omega \times \mathbf R _ {+} = \ \{ {( \omega , t) } : {\omega \in \Omega , t \geq 0 } \} $$
generated by all mappings $ ( \omega , t) \rightarrow f ( \omega , t) $ of the set $ \Omega \times \mathbf R _ {+} $ into $ \mathbf R $ that are (for each fixed $ \omega \in \Omega $) continuous from the left (in $ t $) and $ \mathbf F $- adapted to a non-decreasing family $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t \geq 0 } $ of sub- $ \sigma $- algebras $ {\mathcal F} _ {t} \subseteq {\mathcal F} $, $ t \geq 0 $, where $ ( \Omega , {\mathcal F} ) $ is a measurable space. A predictable $ \sigma $- algebra can be generated by any of the following families of sets:
1) $ A \times \{ 0 \} $, where $ A \in {\mathcal F} _ {0} $ and $ [[ 0, \tau ]] $, where $ \tau $ is a stopping time (cf. Markov moment) and $ [[ 0, \tau ]] $ a stochastic interval;
2) $ A \times \{ 0 \} $, where $ A \in {\mathcal F} _ {0} $, and $ A \times ( s, t] $, where $ s < t $ and $ A \in {\mathcal F} _ {s} $.
Between optional $ \sigma $- algebras (cf. Optional sigma-algebra) and predictable $ \sigma $- algebras there is the relation $ {\mathcal P} ( \mathbf F ) \subseteq {\mathcal O} ( \mathbf F ) $.
References
| [1] | C. Dellacherie, "Capacités et processus stochastique" , Springer (1972) |
Comments
Instead of "(s-) algebra" one more often uses ( $ \sigma $-) field.
References
| [a1] | C. Dellacherie, P.A. Meyer, "Probabilities and potential" , A-C , North-Holland (1978–1988) (Translated from French) |
Predictable sigma-algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Predictable_sigma-algebra&oldid=39353