Difference between revisions of "Möbius series"
(→Comments: Alternative use of the term) |
(→References: expand bibliodata) |
||
(One intermediate revision by the same user not shown) | |||
Line 23: | Line 23: | ||
====References==== | ====References==== | ||
<table> | <table> | ||
− | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Möbius, "Ueber eine besondere Art der Umkehrung der Reihen" ''J. Reine Angew. Math.'' , '''9''' (1832) pp. 105–123</TD></TR> | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Möbius, "Ueber eine besondere Art der Umkehrung der Reihen" ''J. Reine Angew. Math.'' , '''9''' (1832) pp. 105–123 {{DOI|10.1515/crll.1832.9.105}} {{ZBL|009.0333cj}}</TD></TR> |
− | <TR><TD valign="top">[2]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)</TD></TR> | + | <TR><TD valign="top">[2]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian) {{ZBL|0057.28201}}</TD></TR> |
− | <TR><TD valign="top">[3]</TD> <TD valign="top"> K. Prachar, "Primzahlverteilung" , Springer (1957)</TD></TR> | + | <TR><TD valign="top">[3]</TD> <TD valign="top"> K. Prachar, "Primzahlverteilung" , Springer (1957) {{ZBL|0080.25901}}</TD></TR> |
</table> | </table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | All these (and many other) inversion formulas follow from the basic property of the Möbius function that it is the inverse of the unit arithmetic function $E(n) \equiv 1$ under | + | All these (and many other) inversion formulas follow from the basic property of the Möbius function that it is the inverse of the unit arithmetic function $E(n) \equiv 1$ under [[Dirichlet convolution]], cf. (the editorial comments to) [[Möbius function]] and [[Multiplicative arithmetic function]]. |
The term "Möbius series" is also applied to the summatory function of the Möbius function | The term "Möbius series" is also applied to the summatory function of the Möbius function |
Latest revision as of 17:15, 30 April 2016
A class of functions of the form $$ F_n(x) = \sum_{s=1}^\infty f(x^s) s^{-n} \ . $$ These series were investigated by A. Möbius [1], who found for a series (*) the inversion formula $$ f(x) = \sum_{s=1}^\infty \mu(s) F_n(x^s) s^{-n} \ , $$ where $\mu(s)$ is the Möbius function. Möbius considered also inversion formulas for finite sums running over the divisors of a natural number $n$: $$ F(n) = \sum_{d | n} f(d) \ ,\ \ \ f(n) = \sum_{d | n} \mu(d) F(n/d) \ . $$
Another inversion formula: If $P(n)$ is a totally multiplicative function for which $P(1) = 1$, and $f(x)$ is a function defined for all real $x > 0$, then $$ g(x) = \sum_{n \le x} P(n) f(x/n) $$ implies $$ f(x) = \sum_{n \le x} \mu(n) P(n) g(x/n) \ . $$
References
[1] | A. Möbius, "Ueber eine besondere Art der Umkehrung der Reihen" J. Reine Angew. Math. , 9 (1832) pp. 105–123 DOI 10.1515/crll.1832.9.105 Zbl 009.0333cj |
[2] | I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian) Zbl 0057.28201 |
[3] | K. Prachar, "Primzahlverteilung" , Springer (1957) Zbl 0080.25901 |
Comments
All these (and many other) inversion formulas follow from the basic property of the Möbius function that it is the inverse of the unit arithmetic function $E(n) \equiv 1$ under Dirichlet convolution, cf. (the editorial comments to) Möbius function and Multiplicative arithmetic function.
The term "Möbius series" is also applied to the summatory function of the Möbius function $$ M(x) = \sum_{n \le x} \mu(n) \ . $$ Mertens conjectured in 1897 that the bound $|M(x)| < \sqrt x$ holds: this would imply the Riemann hypothesis. Odlyzko and te Riele disproved the Mertens conjecture in 1985.
References
- Odlyzko, A.M.; te Riele, Herman J.J. "Disproof of the Mertens conjecture" J. Reine Angew. Math. 357 (1985) 138-160 DOI 10.1515/crll.1985.357.138 Zbl 544.10047
Möbius series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=M%C3%B6bius_series&oldid=38737