Namespaces
Variants
Actions

Difference between revisions of "Euclidean space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX done and links)
 
Line 13: Line 13:
 
====References====
 
====References====
  
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''I''' , Springer  (1987). {{DOI|10.1007/978-3-540-93815-6}}</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''I''' , Springer  (1987). {{ZBL|0606.51001}} {{DOI|10.1007/978-3-540-93815-6}}</TD></TR></table>

Latest revision as of 14:38, 1 November 2023


A space the properties of which are described by the axioms of Euclidean geometry. In a more general sense, a Euclidean space is a finite-dimensional real vector space $\mathbb{R}^n$ with an inner product $(x,y)$, $x,y\in\mathbb{R}^n$, which in a suitably chosen (Cartesian) coordinate system $x=(x_1,\ldots,x_n)$ and $y=(y_1,\dots,y_n)$ is given by the formula \begin{equation} (x,y)=\sum_{i=1}^{n}x_i y_i. \end{equation}


Comments

Sometimes the phrase "Euclidean space" stands for the case $n=3$, as opposed to the case $n=2$ "Euclidean plane", see [1], Chapts. 8, 9.


References

[1] M. Berger, "Geometry" , I , Springer (1987). Zbl 0606.51001 DOI 10.1007/978-3-540-93815-6
How to Cite This Entry:
Euclidean space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Euclidean_space&oldid=38673
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article