Difference between revisions of "Okubo algebra"
m (link) |
(→References: expand bibliodata) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
− | + | Out of 55 formulas, 55 were replaced by TEX code.--> | |
− | + | {{TEX|semi-auto}}{{TEX|done}} | |
+ | Discovered by S. Okubo [[#References|[a2]]] when searching for an algebraic structure to model $\operatorname { su } ( 3 )$ particle physics. Okubo looked for an algebra that is $8$-dimensional over the complex numbers, power-associative and, unlike the [[octonion]] algebra, has the [[Lie algebra|Lie algebra]] $A _ { 2 }$ as both its derivation algebra and minus algebra. His algebra provides an important example of a [[Division algebra|division algebra]] that is $8$-dimensional over the real numbers with a norm permitting composition that is not alternative. For more information on these algebras, their generalizations and the physics, see [[#References|[a3]]], [[#References|[a5]]], [[#References|[a4]]], [[#References|[a7]]], and [[#References|[a6]]]. | ||
− | + | Following Okubo, [[#References|[a7]]], let $M$ be the set of all $3 \times 3$ traceless Hermitian matrices. The Okubo algebra $P _ { 8 }$ is the [[Vector space|vector space]] over the complex numbers spanned by the set $M$ with product $*$ defined by | |
− | + | \begin{equation*} X ^ { * } Y = \mu X Y + \nu Y X + \frac { 1 } { 6 } \operatorname { Tr } ( X Y ), \end{equation*} | |
− | + | where $X Y$ denotes the usual matrix product of $X$ and $Y$, $\operatorname { Tr } ( X Y )$ is the trace of the matrix $X Y$ (cf. also [[Trace of a square matrix|Trace of a square matrix]]) and the constants $\mu$ and $\nu$ satisfy $3 \mu \nu = \mu + \nu = 1$, that is, $\mu = \overline { \nu } = ( 3 \pm i \sqrt { 3 } ) / 6$. In the discussion below, $\mu = ( 3 + i \sqrt { 3 } ) / 6$. The algebra $P _ { 8 }$ is not a division algebra; however, it contains a division algebra. The real vector space spanned by the set $M$ is a subring $\widetilde { P _ { 8 } }$ of $P _ { 8 }$ under the product $*$ and is a division algebra over the real numbers. Both the algebras $P _ { 8 }$ and $\widetilde { P _ { 8 } }$ are $8$-dimensional over their respective fields of scalars. | |
− | + | An explicit construction of the algebra $P _ { 8 }$ can be given in terms of the following basis of $3 \times 3$ traceless Hermitian matrices, introduced by M. Gell-Mann [[#References|[a1]]]: | |
− | + | \begin{equation*} \lambda _ { 1 } = \left( \begin{array} { l l l } { 0 } & { 1 } & { 0 } \\ { 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right), \lambda _ { 2 } = \left( \begin{array} { c c c } { 0 } & { - i } & { 0 } \\ { i } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right), \end{equation*} | |
− | + | \begin{equation*} \lambda _ { 3 } = \left( \begin{array} { c c c } { 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 4 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 5 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { - i } \\ { 0 } & { 0 } & { 0 } \\ { i } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 6 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 1 } \\ { 0 } & { 1 } & { 0 } \end{array} \right), \end{equation*} | |
− | + | \begin{equation*} \lambda _ { 7 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { - i } \\ { 0 } & { i } & { 0 } \end{array} \right) , \lambda _ { 8 } = \left( \begin{array} { c c c } { \frac { 1 } { \sqrt { 3 } } } & { 0 } & { 0 } \\ { 0 } & { \frac { 1 } { \sqrt { 3 } } } & { 0 } \\ { 0 } & { 0 } & { \frac { - 2 } { \sqrt { 3 } } } \end{array} \right). \end{equation*} | |
− | The | + | The elements $e _ { j } = \sqrt { 3 } \lambda _ { j }$ ($j = 1 , \dots , 8$) form an orthonormal basis; the multiplication follows from |
− | + | \begin{equation*} e _ { j } * e _ { k } = \sum _ { l = 1 } ^ { 8 } ( \sqrt { 3 } d _ { j k l } - f _ { j k l } ) e _ { l }. \end{equation*} | |
− | + | The constants $d_{ j k l}$ and $f _ { j k l }$ must satisfy | |
− | + | \begin{equation*} d _ { j k l } = \frac { 1 } { 4 } \operatorname { Tr } [ ( \gamma _ { j } \gamma _ { k } + \lambda _ { k } \lambda _ { j } ) \lambda _ { l } ], \end{equation*} | |
− | + | \begin{equation*} f _ { j k l } = \frac { - i } { 4 } \operatorname { Tr } [ ( \lambda _ { j } \lambda _ { k } - \lambda _ { k } \lambda _ { j } ) \lambda _ { l } ]. \end{equation*} | |
+ | |||
+ | A partial tabulation of the values of $d_{ j k l}$ and $f _ { j k l }$ can be found in [[#References|[a1]]]. | ||
+ | |||
+ | The norm $\mathbf{N} ( X )$ of $X = \sum _ { j = 1 } ^ { 8 } X _ { j } e_j$ is ${\bf N} ( X ) = \sum _ { j = 1 } ^ { 8 } X _ { j } ^ { 2 }$. In the case of the algebra $\widetilde { P _ { 8 } }$, all the $X_j$ are real and $\mathbf{N} ( X ) = 0$ if and only if $X = 0$. | ||
The elements | The elements | ||
− | + | \begin{equation*} Y _ { j } = - \sqrt { 3 } \lambda _ { j } ( j = 1,2,3 ) , Y _ { 4 } = \sqrt { 3 } \lambda _ { 8 } \end{equation*} | |
− | generate a | + | generate a $4$-dimensional subalgebra, denoted by $P _ { 4 }$. Likewise, any non-identity element $\xi $ will generate a $2$-dimensional subalgebra. |
In addition to the above properties, each algebra will be flexible, power associative and Lie-admissible (cf. also [[Flexible identity]]; [[Lie-admissible algebra]]; [[Algebra with associative powers]]); none of these algebras will have a unit element. | In addition to the above properties, each algebra will be flexible, power associative and Lie-admissible (cf. also [[Flexible identity]]; [[Lie-admissible algebra]]; [[Algebra with associative powers]]); none of these algebras will have a unit element. | ||
====References==== | ====References==== | ||
− | <table>< | + | <table> |
+ | <tr><td valign="top">[a1]</td> <td valign="top"> M. Gell–Mann, "Symmetries of baryons and mesons" ''Phys. Rev.'' , '''125''' (1962) pp. 1067–1084</td></tr> | ||
+ | <tr><td valign="top">[a2]</td> <td valign="top"> S. Okubo, "Pseudo-quaternion and pseudo-octonion algebras" ''Hadronic J.'' , '''1''' (1978) pp. 1250–1278. {{ZBL|0417.17011}}</td></tr> | ||
+ | <tr><td valign="top">[a3]</td> <td valign="top"> S. Okubo, "Deformation of the Lie-admissible pseudo-octonion algebra into the octonion algebra" ''Hadronic J.'' , '''1''' (1978) pp. 1383–1431. {{ZBL|0417.17012}}</td></tr> | ||
+ | <tr><td valign="top">[a4]</td> <td valign="top"> S. Okubo, "Octonion as traceless $3 \times 3$ matrices via a flexible Lie-admissible algebra" ''Hadronic J.'' , '''1''' (1978) pp. 1432–1465. {{ZBL|0417.17013}}</td></tr> | ||
+ | <tr><td valign="top">[a5]</td> <td valign="top"> S. Okubo, "A generalization of Hurwitz theorem and flexible Lie-admissible algebras" ''Hadronic J.'' , '''3''' (1978) pp. 1–52. {{ZBL|0418.17004}}</td></tr> | ||
+ | <tr><td valign="top">[a6]</td> <td valign="top"> S. Okubo, H.C. Myung, "Some new classes of division algebras" ''J. Algebra'' , '''67''' (1980) pp. 479–490</td></tr> | ||
+ | <tr><td valign="top">[a7]</td> <td valign="top"> S. Okubo, "Introduction to octonion and other non-associative algebras in physics" , Cambridge Univ. Press (1995)</td></tr> | ||
+ | </table> |
Latest revision as of 10:21, 8 March 2021
Discovered by S. Okubo [a2] when searching for an algebraic structure to model $\operatorname { su } ( 3 )$ particle physics. Okubo looked for an algebra that is $8$-dimensional over the complex numbers, power-associative and, unlike the octonion algebra, has the Lie algebra $A _ { 2 }$ as both its derivation algebra and minus algebra. His algebra provides an important example of a division algebra that is $8$-dimensional over the real numbers with a norm permitting composition that is not alternative. For more information on these algebras, their generalizations and the physics, see [a3], [a5], [a4], [a7], and [a6].
Following Okubo, [a7], let $M$ be the set of all $3 \times 3$ traceless Hermitian matrices. The Okubo algebra $P _ { 8 }$ is the vector space over the complex numbers spanned by the set $M$ with product $*$ defined by
\begin{equation*} X ^ { * } Y = \mu X Y + \nu Y X + \frac { 1 } { 6 } \operatorname { Tr } ( X Y ), \end{equation*}
where $X Y$ denotes the usual matrix product of $X$ and $Y$, $\operatorname { Tr } ( X Y )$ is the trace of the matrix $X Y$ (cf. also Trace of a square matrix) and the constants $\mu$ and $\nu$ satisfy $3 \mu \nu = \mu + \nu = 1$, that is, $\mu = \overline { \nu } = ( 3 \pm i \sqrt { 3 } ) / 6$. In the discussion below, $\mu = ( 3 + i \sqrt { 3 } ) / 6$. The algebra $P _ { 8 }$ is not a division algebra; however, it contains a division algebra. The real vector space spanned by the set $M$ is a subring $\widetilde { P _ { 8 } }$ of $P _ { 8 }$ under the product $*$ and is a division algebra over the real numbers. Both the algebras $P _ { 8 }$ and $\widetilde { P _ { 8 } }$ are $8$-dimensional over their respective fields of scalars.
An explicit construction of the algebra $P _ { 8 }$ can be given in terms of the following basis of $3 \times 3$ traceless Hermitian matrices, introduced by M. Gell-Mann [a1]:
\begin{equation*} \lambda _ { 1 } = \left( \begin{array} { l l l } { 0 } & { 1 } & { 0 } \\ { 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right), \lambda _ { 2 } = \left( \begin{array} { c c c } { 0 } & { - i } & { 0 } \\ { i } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right), \end{equation*}
\begin{equation*} \lambda _ { 3 } = \left( \begin{array} { c c c } { 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 4 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 5 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { - i } \\ { 0 } & { 0 } & { 0 } \\ { i } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 6 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 1 } \\ { 0 } & { 1 } & { 0 } \end{array} \right), \end{equation*}
\begin{equation*} \lambda _ { 7 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { - i } \\ { 0 } & { i } & { 0 } \end{array} \right) , \lambda _ { 8 } = \left( \begin{array} { c c c } { \frac { 1 } { \sqrt { 3 } } } & { 0 } & { 0 } \\ { 0 } & { \frac { 1 } { \sqrt { 3 } } } & { 0 } \\ { 0 } & { 0 } & { \frac { - 2 } { \sqrt { 3 } } } \end{array} \right). \end{equation*}
The elements $e _ { j } = \sqrt { 3 } \lambda _ { j }$ ($j = 1 , \dots , 8$) form an orthonormal basis; the multiplication follows from
\begin{equation*} e _ { j } * e _ { k } = \sum _ { l = 1 } ^ { 8 } ( \sqrt { 3 } d _ { j k l } - f _ { j k l } ) e _ { l }. \end{equation*}
The constants $d_{ j k l}$ and $f _ { j k l }$ must satisfy
\begin{equation*} d _ { j k l } = \frac { 1 } { 4 } \operatorname { Tr } [ ( \gamma _ { j } \gamma _ { k } + \lambda _ { k } \lambda _ { j } ) \lambda _ { l } ], \end{equation*}
\begin{equation*} f _ { j k l } = \frac { - i } { 4 } \operatorname { Tr } [ ( \lambda _ { j } \lambda _ { k } - \lambda _ { k } \lambda _ { j } ) \lambda _ { l } ]. \end{equation*}
A partial tabulation of the values of $d_{ j k l}$ and $f _ { j k l }$ can be found in [a1].
The norm $\mathbf{N} ( X )$ of $X = \sum _ { j = 1 } ^ { 8 } X _ { j } e_j$ is ${\bf N} ( X ) = \sum _ { j = 1 } ^ { 8 } X _ { j } ^ { 2 }$. In the case of the algebra $\widetilde { P _ { 8 } }$, all the $X_j$ are real and $\mathbf{N} ( X ) = 0$ if and only if $X = 0$.
The elements
\begin{equation*} Y _ { j } = - \sqrt { 3 } \lambda _ { j } ( j = 1,2,3 ) , Y _ { 4 } = \sqrt { 3 } \lambda _ { 8 } \end{equation*}
generate a $4$-dimensional subalgebra, denoted by $P _ { 4 }$. Likewise, any non-identity element $\xi $ will generate a $2$-dimensional subalgebra.
In addition to the above properties, each algebra will be flexible, power associative and Lie-admissible (cf. also Flexible identity; Lie-admissible algebra; Algebra with associative powers); none of these algebras will have a unit element.
References
[a1] | M. Gell–Mann, "Symmetries of baryons and mesons" Phys. Rev. , 125 (1962) pp. 1067–1084 |
[a2] | S. Okubo, "Pseudo-quaternion and pseudo-octonion algebras" Hadronic J. , 1 (1978) pp. 1250–1278. Zbl 0417.17011 |
[a3] | S. Okubo, "Deformation of the Lie-admissible pseudo-octonion algebra into the octonion algebra" Hadronic J. , 1 (1978) pp. 1383–1431. Zbl 0417.17012 |
[a4] | S. Okubo, "Octonion as traceless $3 \times 3$ matrices via a flexible Lie-admissible algebra" Hadronic J. , 1 (1978) pp. 1432–1465. Zbl 0417.17013 |
[a5] | S. Okubo, "A generalization of Hurwitz theorem and flexible Lie-admissible algebras" Hadronic J. , 3 (1978) pp. 1–52. Zbl 0418.17004 |
[a6] | S. Okubo, H.C. Myung, "Some new classes of division algebras" J. Algebra , 67 (1980) pp. 479–490 |
[a7] | S. Okubo, "Introduction to octonion and other non-associative algebras in physics" , Cambridge Univ. Press (1995) |
Okubo algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Okubo_algebra&oldid=37374