Difference between revisions of "Luzin-N-property"
(Fixed error in the order of the quantifiers for Banach Property S) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0610502.png | ||
+ | $#A+1 = 88 n = 0 | ||
+ | $#C+1 = 88 : ~/encyclopedia/old_files/data/L061/L.0601050 Luzin \BMI N\EMI\AAhproperty, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | '' "null-propertynull-property" , of a function $ f $, | |
+ | continuous on an interval $ [ a , b ] $'' | ||
− | + | For any set $ E \subset [ a , b ] $ | |
+ | of measure $ \mathop{\rm mes} E = 0 $, | ||
+ | the image of this set, $ f ( E) $, | ||
+ | also has measure zero. It was introduced by N.N. Luzin in 1915 (see [[#References|[1]]]). The following assertions hold. | ||
− | + | 1) A function $ f \not\equiv \textrm{ const } $ | |
+ | on $ [ a , b ] $ | ||
+ | such that $ f ^ { \prime } ( x) = 0 $ | ||
+ | almost-everywhere on $ [ a , b ] $ | ||
+ | does not have the Luzin $ N $- | ||
+ | property | ||
+ | (for example [[Cantor ternary function]]). | ||
− | + | 2) If $ f $ | |
+ | does not have the Luzin $ N $- | ||
+ | property, then on $ [ a , b ] $ | ||
+ | there is a [[Perfect set|perfect set]] $ P $ | ||
+ | of measure zero such that $ \mathop{\rm mes} f ( P) > 0 $. | ||
− | + | 3) An absolutely continuous function has the Luzin $ N $- | |
+ | property. | ||
− | + | 4) If $ f $ | |
+ | has the Luzin $ N $- | ||
+ | property and has bounded variation on $ [ a , b ] $( | ||
+ | as well as being continuous on $ [ a , b ] $), | ||
+ | then $ f $ | ||
+ | is absolutely continuous on $ [ a , b ] $( | ||
+ | the Banach–Zaretskii theorem). | ||
− | + | 5) If $ f $ | |
+ | does not decrease on $ [ a , b ] $ | ||
+ | and $ f ^ { \prime } $ | ||
+ | is finite on $ [ a , b ] $, | ||
+ | then $ f $ | ||
+ | has the Luzin $ N $- | ||
+ | property. | ||
− | + | 6) In order that $ f ( E) $ | |
+ | be measurable for every measurable set $ E \subset [ a , b ] $ | ||
+ | it is necessary and sufficient that $ f $ | ||
+ | have the Luzin $ N $- | ||
+ | property on $ [ a , b ] $. | ||
− | The concept of Luzin's | + | 7) A function $ f $ |
+ | that has the Luzin $ N $- | ||
+ | property has a derivative $ f ^ { \prime } $ | ||
+ | on the set for which any non-empty [[Portion|portion]] of it has positive measure. | ||
+ | |||
+ | 8) For any perfect nowhere-dense set $ P \subset [ a , b ] $ | ||
+ | there is a function $ f $ | ||
+ | having the Luzin $ N $- | ||
+ | property on $ [ a , b ] $ | ||
+ | and such that $ f ^ { \prime } $ | ||
+ | does not exist at any point of $ P $. | ||
+ | |||
+ | The concept of Luzin's $ N $- | ||
+ | property can be generalized to functions of several variables and functions of a more general nature, defined on measure spaces. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.N. Luzin, "The integral and trigonometric series" , Moscow-Leningrad (1915) (In Russian) (Thesis; also: Collected Works, Vol. 1, Moscow, 1953, pp. 48–212) {{MR|}} {{ZBL|}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.N. Luzin, "The integral and trigonometric series" , Moscow-Leningrad (1915) (In Russian) (Thesis; also: Collected Works, Vol. 1, Moscow, 1953, pp. 48–212) {{MR|}} {{ZBL|}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | There is another property intimately related to the Luzin | + | There is another property intimately related to the Luzin $ N $- |
+ | property. A function $ f $ | ||
+ | continuous on an interval $ [ a , b ] $ | ||
+ | has the Banach $ S $- | ||
+ | property if for all $ E \subset [ a, b ] $ | ||
+ | there exists a $ \epsilon > 0 $ | ||
+ | such that for all Lebesgue-measurable sets $ \delta > 0 $, | ||
− | < | + | $$ |
+ | \mathop{\rm mes} ( E) < \delta \Rightarrow \mathop{\rm mes} ( f ( E) ) < \epsilon . | ||
+ | $$ | ||
− | This is clearly stronger than the | + | This is clearly stronger than the $ N $- |
+ | property. S. Banach proved that a function $ f $ | ||
+ | has the $ S $- | ||
+ | property (respectively, the $ N $- | ||
+ | property) if and only if (respectively, only if — see below for the missing "if" ) the inverse image $ f ^ { - 1 } ( \{ x \} ) $ | ||
+ | is finite (respectively, is at most countable) for almost-all $ x $ | ||
+ | in $ f ( [ a , b ] ) $. | ||
+ | For classical results on the $ N $- | ||
+ | and $ S $- | ||
+ | properties, see [[#References|[a3]]]. | ||
− | Recently a powerful extension of these results has been given by G. Mokobodzki (cf. [[#References|[a1]]], [[#References|[a2]]]), allowing one to prove deep results in potential theory. Let | + | Recently a powerful extension of these results has been given by G. Mokobodzki (cf. [[#References|[a1]]], [[#References|[a2]]]), allowing one to prove deep results in potential theory. Let $ \Omega $ |
+ | and $ T $ | ||
+ | be two compact metrizable spaces, $ \Omega $ | ||
+ | being equipped with a probability measure $ P $. | ||
+ | Let $ F $ | ||
+ | be a Borel subset of $ \Omega \times T $ | ||
+ | and, for any Borel subset $ E $ | ||
+ | of $ \Omega $, | ||
+ | define the subset $ F ( E) $ | ||
+ | of $ T $ | ||
+ | by $ F ( E) = \{ {t \in T } : {\textrm{ there is an } \omega \in \Omega \textrm{ such that } ( \omega , t ) \in F } \} $( | ||
+ | if $ F $ | ||
+ | is the graph of a mapping $ f: \Omega \rightarrow T $, | ||
+ | then $ F ( E) = f ( E) $). | ||
+ | The set $ F $ | ||
+ | is said to have the property (N) (respectively, the property (S)) if there exists a measure $ \lambda $ | ||
+ | on $ T $( | ||
+ | here depending on $ F $) | ||
+ | such that for all $ E \in {\mathcal B} ( \Omega ) $, | ||
− | + | $$ | |
+ | P ( E) = 0 \Rightarrow \lambda ( F ( E) ) = 0 | ||
+ | $$ | ||
− | (respectively, for all | + | (respectively, for all $ \epsilon > 0 $ |
+ | there is a $ \delta > 0 $ | ||
+ | such that for all $ E \in {\mathcal B} ( \Omega ) $ | ||
+ | one has | ||
− | < | + | $$ |
+ | P ( E) < \delta \Rightarrow \lambda ( F ( E) ) < \epsilon \textrm{ ) } . | ||
+ | $$ | ||
− | Now | + | Now $ F $ |
+ | has the property (N) (respectively, the property (S)) if and only if the section $ F ( \omega ) $ | ||
+ | of $ F $ | ||
+ | is at most countable (respectively, is finite) for almost-all $ \omega \in \Omega $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Dellacherie, D. Feyel, G. Mokobodzki, "Intégrales de capacités fortement sous-additives" , ''Sem. Probab. Strasbourg XVI'' , ''Lect. notes in math.'' , '''920''' , Springer (1982) pp. 8–28 {{MR|0658670}} {{ZBL|0496.60076}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Louveau, "Minceur et continuité séquentielle des sous-mesures analytiques fortement sous-additives" , ''Sem. Initiation à l'Analyse'' , '''66''' , Univ. P. et M. Curie (1983–1984) {{MR|}} {{ZBL|0587.28003}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) {{MR|0167578}} {{ZBL|1196.28001}} {{ZBL|0017.30004}} {{ZBL|63.0183.05}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) {{MR|0188387}} {{ZBL|0137.03202}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Dellacherie, D. Feyel, G. Mokobodzki, "Intégrales de capacités fortement sous-additives" , ''Sem. Probab. Strasbourg XVI'' , ''Lect. notes in math.'' , '''920''' , Springer (1982) pp. 8–28 {{MR|0658670}} {{ZBL|0496.60076}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Louveau, "Minceur et continuité séquentielle des sous-mesures analytiques fortement sous-additives" , ''Sem. Initiation à l'Analyse'' , '''66''' , Univ. P. et M. Curie (1983–1984) {{MR|}} {{ZBL|0587.28003}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) {{MR|0167578}} {{ZBL|1196.28001}} {{ZBL|0017.30004}} {{ZBL|63.0183.05}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) {{MR|0188387}} {{ZBL|0137.03202}} </TD></TR></table> |
Latest revision as of 04:11, 6 June 2020
"null-propertynull-property" , of a function $ f $,
continuous on an interval $ [ a , b ] $
For any set $ E \subset [ a , b ] $ of measure $ \mathop{\rm mes} E = 0 $, the image of this set, $ f ( E) $, also has measure zero. It was introduced by N.N. Luzin in 1915 (see [1]). The following assertions hold.
1) A function $ f \not\equiv \textrm{ const } $ on $ [ a , b ] $ such that $ f ^ { \prime } ( x) = 0 $ almost-everywhere on $ [ a , b ] $ does not have the Luzin $ N $- property (for example Cantor ternary function).
2) If $ f $ does not have the Luzin $ N $- property, then on $ [ a , b ] $ there is a perfect set $ P $ of measure zero such that $ \mathop{\rm mes} f ( P) > 0 $.
3) An absolutely continuous function has the Luzin $ N $- property.
4) If $ f $ has the Luzin $ N $- property and has bounded variation on $ [ a , b ] $( as well as being continuous on $ [ a , b ] $), then $ f $ is absolutely continuous on $ [ a , b ] $( the Banach–Zaretskii theorem).
5) If $ f $ does not decrease on $ [ a , b ] $ and $ f ^ { \prime } $ is finite on $ [ a , b ] $, then $ f $ has the Luzin $ N $- property.
6) In order that $ f ( E) $ be measurable for every measurable set $ E \subset [ a , b ] $ it is necessary and sufficient that $ f $ have the Luzin $ N $- property on $ [ a , b ] $.
7) A function $ f $ that has the Luzin $ N $- property has a derivative $ f ^ { \prime } $ on the set for which any non-empty portion of it has positive measure.
8) For any perfect nowhere-dense set $ P \subset [ a , b ] $ there is a function $ f $ having the Luzin $ N $- property on $ [ a , b ] $ and such that $ f ^ { \prime } $ does not exist at any point of $ P $.
The concept of Luzin's $ N $- property can be generalized to functions of several variables and functions of a more general nature, defined on measure spaces.
References
[1] | N.N. Luzin, "The integral and trigonometric series" , Moscow-Leningrad (1915) (In Russian) (Thesis; also: Collected Works, Vol. 1, Moscow, 1953, pp. 48–212) |
Comments
There is another property intimately related to the Luzin $ N $- property. A function $ f $ continuous on an interval $ [ a , b ] $ has the Banach $ S $- property if for all $ E \subset [ a, b ] $ there exists a $ \epsilon > 0 $ such that for all Lebesgue-measurable sets $ \delta > 0 $,
$$ \mathop{\rm mes} ( E) < \delta \Rightarrow \mathop{\rm mes} ( f ( E) ) < \epsilon . $$
This is clearly stronger than the $ N $- property. S. Banach proved that a function $ f $ has the $ S $- property (respectively, the $ N $- property) if and only if (respectively, only if — see below for the missing "if" ) the inverse image $ f ^ { - 1 } ( \{ x \} ) $ is finite (respectively, is at most countable) for almost-all $ x $ in $ f ( [ a , b ] ) $. For classical results on the $ N $- and $ S $- properties, see [a3].
Recently a powerful extension of these results has been given by G. Mokobodzki (cf. [a1], [a2]), allowing one to prove deep results in potential theory. Let $ \Omega $ and $ T $ be two compact metrizable spaces, $ \Omega $ being equipped with a probability measure $ P $. Let $ F $ be a Borel subset of $ \Omega \times T $ and, for any Borel subset $ E $ of $ \Omega $, define the subset $ F ( E) $ of $ T $ by $ F ( E) = \{ {t \in T } : {\textrm{ there is an } \omega \in \Omega \textrm{ such that } ( \omega , t ) \in F } \} $( if $ F $ is the graph of a mapping $ f: \Omega \rightarrow T $, then $ F ( E) = f ( E) $). The set $ F $ is said to have the property (N) (respectively, the property (S)) if there exists a measure $ \lambda $ on $ T $( here depending on $ F $) such that for all $ E \in {\mathcal B} ( \Omega ) $,
$$ P ( E) = 0 \Rightarrow \lambda ( F ( E) ) = 0 $$
(respectively, for all $ \epsilon > 0 $ there is a $ \delta > 0 $ such that for all $ E \in {\mathcal B} ( \Omega ) $ one has
$$ P ( E) < \delta \Rightarrow \lambda ( F ( E) ) < \epsilon \textrm{ ) } . $$
Now $ F $ has the property (N) (respectively, the property (S)) if and only if the section $ F ( \omega ) $ of $ F $ is at most countable (respectively, is finite) for almost-all $ \omega \in \Omega $.
References
[a1] | C. Dellacherie, D. Feyel, G. Mokobodzki, "Intégrales de capacités fortement sous-additives" , Sem. Probab. Strasbourg XVI , Lect. notes in math. , 920 , Springer (1982) pp. 8–28 MR0658670 Zbl 0496.60076 |
[a2] | A. Louveau, "Minceur et continuité séquentielle des sous-mesures analytiques fortement sous-additives" , Sem. Initiation à l'Analyse , 66 , Univ. P. et M. Curie (1983–1984) Zbl 0587.28003 |
[a3] | S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) MR0167578 Zbl 1196.28001 Zbl 0017.30004 Zbl 63.0183.05 |
[a4] | E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) MR0188387 Zbl 0137.03202 |
Luzin-N-property. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Luzin-N-property&oldid=36810