Difference between revisions of "Euler identity"
m (ce) |
m (better) |
||
(One intermediate revision by the same user not shown) | |||
Line 9: | Line 9: | ||
\sum_{n=1}^\infty f(n) = \prod_p \left({1 - \frac{1}{f(p)} }\right)^{-1} | \sum_{n=1}^\infty f(n) = \prod_p \left({1 - \frac{1}{f(p)} }\right)^{-1} | ||
$$ | $$ | ||
− | which holds for every totally | + | which holds for every [[totally multiplicative function|totally multiplicative arithmetic function]] $f(n)$ for which the series $\sum_{n=1}^\infty f(n) $ is absolutely convergent. |
Another generalization of the Euler identity is the formula | Another generalization of the Euler identity is the formula | ||
Line 26: | Line 26: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Chandrasekharan, "Introduction to analytic number theory" , Springer (1968)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Lang, "Introduction to modular forms" , Springer (1976)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> K. Chandrasekharan, "Introduction to analytic number theory" , Springer (1968)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> S. Lang, "Introduction to modular forms" , Springer (1976)</TD></TR> | ||
+ | </table> | ||
Line 38: | Line 41: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.C. Titchmarsh, "The theory of the Riemann zeta-function" , Clarendon Press (1951)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> E.C. Titchmarsh, "The theory of the Riemann zeta-function" , Clarendon Press (1951)</TD></TR> | ||
+ | </table> |
Latest revision as of 19:13, 14 December 2015
The relation $$ \sum_{n=1}^\infty \frac{1}{n^s} = \prod_p \left({1 - \frac{1}{p^s} }\right)^{-1} $$ where $s>1$ is an arbitrary real number and the product extends over all prime numbers $p$. The Euler identity also holds for all complex numbers $s = \sigma + it$ with $\sigma > 1$.
The Euler identity can be generalized in the form $$ \sum_{n=1}^\infty f(n) = \prod_p \left({1 - \frac{1}{f(p)} }\right)^{-1} $$ which holds for every totally multiplicative arithmetic function $f(n)$ for which the series $\sum_{n=1}^\infty f(n) $ is absolutely convergent.
Another generalization of the Euler identity is the formula $$ \sum_{n=1}^\infty \frac{a_n}{n^s} = \prod_p \left({1 - a_p p^{-s} + p^{2k-1-2s} }\right)^{-1} $$ for the Dirichlet series $$ F(s) = \sum_{n=1}^\infty \frac{a_n}{n^s}\ ,\ \ \ s = \sigma + it\ ,\ \ \ \sigma > 1 $$ corresponding to the modular functions $$ f(z) = \sum_{n=1}^\infty a_n e^{2\pi i n z} $$ of weight $2k$, which are the eigen functions of the Hecke operator.
References
[1] | K. Chandrasekharan, "Introduction to analytic number theory" , Springer (1968) |
[2] | S. Lang, "Introduction to modular forms" , Springer (1976) |
Comments
The product $$ \prod_p \left({1 - \frac{1}{p^s} }\right)^{-1} $$ is called the Euler product. For Hecke operators in connection with modular forms see Modular form. For totally-multiplicative arithmetic functions cf. Multiplicative arithmetic function.
References
[a1] | E.C. Titchmarsh, "The theory of the Riemann zeta-function" , Clarendon Press (1951) |
Euler identity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Euler_identity&oldid=36130