Namespaces
Variants
Actions

Difference between revisions of "Selberg sieve"

From Encyclopedia of Mathematics
Jump to: navigation, search
(LaTeX)
m (→‎References: expand bibliodata)
 
Line 19: Line 19:
 
====References====
 
====References====
 
<table>
 
<table>
<TR><TD valign="top">[1]</TD> <TD valign="top">  A. Selberg,  "On an elementary method in the theory of primes"  ''Norsk. Vid. Selsk. Forh.'' , '''19''' :  18  (1947)  pp. 64–67</TD></TR>
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  A. Selberg,  "On an elementary method in the theory of primes"  ''Norsk. Vid. Selsk. Forh.'' , '''19''' :  18  (1947)  pp. 64–67 {{ZBL|0041.01903}}</TD></TR>
<TR><TD valign="top">[2]</TD> <TD valign="top">  K. Prachar,  "Primzahlverteilung" , Springer  (1957)</TD></TR>
+
<TR><TD valign="top">[2]</TD> <TD valign="top">  K. Prachar,  "Primzahlverteilung", Die Grundlehren der Mathematischen Wissenschaften '''91''', Springer  (1957) {{ZBL|0080.25901}}</TD></TR>
<TR><TD valign="top">[3]</TD> <TD valign="top">  H. Halberstam,  H.-E. Richert,  "Sieve methods" , Acad. Press  (1974)</TD></TR>
+
<TR><TD valign="top">[3]</TD> <TD valign="top">  H. Halberstam,  H.-E. Richert,  "Sieve methods", London Mathematical Society Monographs '''4''', Academic Press  (1974) {{ZBL|0298.10026}}</TD></TR>
 
</table>
 
</table>

Latest revision as of 19:56, 21 November 2014


2020 Mathematics Subject Classification: Primary: 11N35 [MSN][ZBL]

Selberg method

A special, and at the same time fairly universal, sieve method created by A. Selberg [1]. The Selberg sieve enables one to obtain a good upper bound of the sifting function $S(A;P,z)$, which denotes the number of elements of a set $A$ of integers that are not divisible by prime numbers $p < z$ and that belong to a certain set $P$ of prime numbers.

Let $P(z) = \prod_{p<z\,;\,p \in P} p$. The Selberg method is based on the obvious inequality $$ \begin{equation}\label{e:1} S(A;P,z) \le \sum_{a \in A} \left({ \sum_{d | a\,;\,d | P(z)} \lambda_d }\right)^2 \end{equation} $$ which holds for $\lambda_1 = 1$ and arbitrary real numbers $\lambda_d$ ($d \ge 2$). Selberg's idea consists of the following: Set $\lambda_d = 0$ for $d \ge z$, and minimize the right-hand side of \ref{e:1} by a suitable choice of the remaining numbers $\lambda_d$ ($2 \le d < z$).

When combined with other sieve methods, the Selberg sieve enables one to obtain lower bounds that are particularly powerful when used with weight functions.

References

[1] A. Selberg, "On an elementary method in the theory of primes" Norsk. Vid. Selsk. Forh. , 19 : 18 (1947) pp. 64–67 Zbl 0041.01903
[2] K. Prachar, "Primzahlverteilung", Die Grundlehren der Mathematischen Wissenschaften 91, Springer (1957) Zbl 0080.25901
[3] H. Halberstam, H.-E. Richert, "Sieve methods", London Mathematical Society Monographs 4, Academic Press (1974) Zbl 0298.10026
How to Cite This Entry:
Selberg sieve. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Selberg_sieve&oldid=34720
This article was adapted from an original article by B.M. Bredikhin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article