Namespaces
Variants
Actions

Difference between revisions of "Open set"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Category:General topology)
m (better)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{{TEX|done}}
+
{{TEX|done}}{{MSC|54A05}}
  
 
''in a topological space''
 
''in a topological space''
Line 6: Line 6:
 
# $X\in\tau$, $\emptyset\in\tau$;  
 
# $X\in\tau$, $\emptyset\in\tau$;  
 
# if $O_i\in\tau$, where $i=1,2$, then $O_1\cap O_2\in\tau$;  
 
# if $O_i\in\tau$, where $i=1,2$, then $O_1\cap O_2\in\tau$;  
# if $O_{\alpha}\in\tau$, where $\alpha\in\mathfrak{A}$, then $\bigcup\{O_{\alpha} : \alpha\in\mathfrak{A} \}$.  
+
# if $O_{\alpha}\in\tau$, where $\alpha\in\mathfrak{A}$, then $\bigcup\{O_{\alpha} : \alpha\in\mathfrak{A} \} \in \tau$.  
  
 
The open sets in the space $(X, \tau)$ are then the elements of the topology $\tau$ and only them.
 
The open sets in the space $(X, \tau)$ are then the elements of the topology $\tau$ and only them.
Line 13: Line 13:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Engelking,  "General topology" , Heldermann  (1989)</TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Engelking,  "General topology" , Heldermann  (1989)</TD></TR>
[[Category:General topology]]
+
</table>

Latest revision as of 20:40, 9 April 2016

2020 Mathematics Subject Classification: Primary: 54A05 [MSN][ZBL]

in a topological space

An element of the topology (cf. Topological structure (topology)) of this space. More specifically, let the topology $\tau$ of a topological space $(X, \tau)$ be defined as a system $\tau$ of subsets of the set $X$ such that:

  1. $X\in\tau$, $\emptyset\in\tau$;
  2. if $O_i\in\tau$, where $i=1,2$, then $O_1\cap O_2\in\tau$;
  3. if $O_{\alpha}\in\tau$, where $\alpha\in\mathfrak{A}$, then $\bigcup\{O_{\alpha} : \alpha\in\mathfrak{A} \} \in \tau$.

The open sets in the space $(X, \tau)$ are then the elements of the topology $\tau$ and only them.


References

[a1] R. Engelking, "General topology" , Heldermann (1989)
How to Cite This Entry:
Open set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Open_set&oldid=33645
This article was adapted from an original article by B.A. Pasynkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article