Namespaces
Variants
Actions

Difference between revisions of "Integrals in involution"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(eqref)
 
(2 intermediate revisions by one other user not shown)
Line 2: Line 2:
 
Solutions of differential equations whose [[Jacobi brackets|Jacobi brackets]] vanish identically. A function $G(x,u,p)$ of $2n+1$ variables $x=(x_1,\dots,x_n)$, $u$, $p=(p_1,\dots,p_n)$ is a first integral of the first-order partial differential equation
 
Solutions of differential equations whose [[Jacobi brackets|Jacobi brackets]] vanish identically. A function $G(x,u,p)$ of $2n+1$ variables $x=(x_1,\dots,x_n)$, $u$, $p=(p_1,\dots,p_n)$ is a first integral of the first-order partial differential equation
  
$$F(x,u,p)=0,\tag{1}$$
+
\begin{equation}F(x,u,p)=0,\label{1}\tag{1}\end{equation}
  
 
$$u=u(x_1,\dots,x_n),\quad p_i=\frac{\partial u}{\partial x_i},\quad1\leq i\leq n,$$
 
$$u=u(x_1,\dots,x_n),\quad p_i=\frac{\partial u}{\partial x_i},\quad1\leq i\leq n,$$
Line 8: Line 8:
 
if it is constant along each [[Characteristic|characteristic]] of this equation. Two first integrals $G(x,u,p)$, $i=1,2$, are in involution if their Jacobi brackets vanish identically in $(x,u,p)$:
 
if it is constant along each [[Characteristic|characteristic]] of this equation. Two first integrals $G(x,u,p)$, $i=1,2$, are in involution if their Jacobi brackets vanish identically in $(x,u,p)$:
  
$$[G_1,G_2]=0.\tag{2}$$
+
\begin{equation}[G_1,G_2]=0.\label{2}\tag{2}\end{equation}
  
More generally, two functions $G_1,G_2$ are in involution if condition \ref{2} holds. Any first integral $G$ of equation \ref{1} is in involution with $F$; the last function itself is a first integral.
+
More generally, two functions $G_1,G_2$ are in involution if condition \eqref{2} holds. Any first integral $G$ of equation \eqref{1} is in involution with $F$; the last function itself is a first integral.
  
 
These definitions can be extended to a system of equations
 
These definitions can be extended to a system of equations
  
$$F_i(x,u,p)=0,\quad1\leq i\leq m.$$
+
\begin{equation}F_i(x,u,p)=0,\quad1\leq i\leq m.\label{3}\tag{3}\end{equation}
  
 
Here the first integral of this system $G(x,u,p)$ can be regarded as a solution of the system of linear equations
 
Here the first integral of this system $G(x,u,p)$ can be regarded as a solution of the system of linear equations
  
$$[F_i,G]=0,\quad1\leq i\leq m,\tag{4}$$
+
\begin{equation}[F_i,G]=0,\quad1\leq i\leq m,\label{4}\tag{4}\end{equation}
  
 
with unknown function $G$.
 
with unknown function $G$.
  
If \ref{3} is an [[Involutional system|involutional system]], then \ref{4} is a [[Complete system|complete system]]. It is in involution if the functions $F_i$ in \ref{3} do not depend on $u$.
+
If \eqref{3} is an [[involutional system]], then \eqref{4} is a [[complete system]]. It is in involution if the functions $F_i$ in \eqref{3} do not depend on $u$.
 
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.M. Gyunter,  "Integrating first-order partial differential equations" , Leningrad-Moscow  (1934)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Kamke,  "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''2. Partielle Differentialgleichungen erster Ordnung für die gesuchte Funktion''' , Akad. Verlagsgesell.  (1944)</TD></TR></table>
 
 
 
 
 
  
 
====Comments====
 
====Comments====
 
For additional references see [[Complete system|Complete system]]. An involutional system is usually called a system in involution.
 
For additional references see [[Complete system|Complete system]]. An involutional system is usually called a system in involution.
 +
 +
====References====
 +
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  N.M. Gyunter,  "Integrating first-order partial differential equations" , Leningrad-Moscow  (1934)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Kamke,  "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''2. Partielle Differentialgleichungen erster Ordnung für die gesuchte Funktion''' , Akad. Verlagsgesell.  (1944)</TD></TR>
 +
</table>

Latest revision as of 06:56, 23 March 2024

Solutions of differential equations whose Jacobi brackets vanish identically. A function $G(x,u,p)$ of $2n+1$ variables $x=(x_1,\dots,x_n)$, $u$, $p=(p_1,\dots,p_n)$ is a first integral of the first-order partial differential equation

\begin{equation}F(x,u,p)=0,\label{1}\tag{1}\end{equation}

$$u=u(x_1,\dots,x_n),\quad p_i=\frac{\partial u}{\partial x_i},\quad1\leq i\leq n,$$

if it is constant along each characteristic of this equation. Two first integrals $G(x,u,p)$, $i=1,2$, are in involution if their Jacobi brackets vanish identically in $(x,u,p)$:

\begin{equation}[G_1,G_2]=0.\label{2}\tag{2}\end{equation}

More generally, two functions $G_1,G_2$ are in involution if condition \eqref{2} holds. Any first integral $G$ of equation \eqref{1} is in involution with $F$; the last function itself is a first integral.

These definitions can be extended to a system of equations

\begin{equation}F_i(x,u,p)=0,\quad1\leq i\leq m.\label{3}\tag{3}\end{equation}

Here the first integral of this system $G(x,u,p)$ can be regarded as a solution of the system of linear equations

\begin{equation}[F_i,G]=0,\quad1\leq i\leq m,\label{4}\tag{4}\end{equation}

with unknown function $G$.

If \eqref{3} is an involutional system, then \eqref{4} is a complete system. It is in involution if the functions $F_i$ in \eqref{3} do not depend on $u$.

Comments

For additional references see Complete system. An involutional system is usually called a system in involution.

References

[1] N.M. Gyunter, "Integrating first-order partial differential equations" , Leningrad-Moscow (1934) (In Russian)
[2] E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , 2. Partielle Differentialgleichungen erster Ordnung für die gesuchte Funktion , Akad. Verlagsgesell. (1944)
How to Cite This Entry:
Integrals in involution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integrals_in_involution&oldid=33069
This article was adapted from an original article by A.P. Soldatov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article