Namespaces
Variants
Actions

Difference between revisions of "Urysohn space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(gather refs)
 
Line 2: Line 2:
 
''space satisfying the Urysohn separation axiom''
 
''space satisfying the Urysohn separation axiom''
  
A [[Topological space|topological space]] in which any two distinct points have neighbourhoods with disjoint closure.
+
A [[topological space]] in which any two distinct points have neighbourhoods with disjoint closure.
 
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Aleksandrov,  P. Urysohn,  "Mémoire sur les espaces topologiques compacts" , Koninkl. Nederl. Akad. Wetensch. , Amsterdam  (1929)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.V. Arkhangel'skii,  V.I. Ponomarev,  "Fundamentals of general topology: problems and exercises" , Reidel  (1984)  pp. 125  (Translated from Russian)</TD></TR></table>
 
 
 
 
 
  
 
====Comments====
 
====Comments====
Line 13: Line 8:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Engelking,  "General topology" , Heldermann  (1989)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Aleksandrov,  P. Urysohn,  "Mémoire sur les espaces topologiques compacts" , Koninkl. Nederl. Akad. Wetensch. , Amsterdam  (1929)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.V. Arkhangel'skii,  V.I. Ponomarev,  "Fundamentals of general topology: problems and exercises" , Reidel  (1984)  pp. 125  (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Engelking,  "General topology" , Heldermann  (1989)</TD></TR></table>

Latest revision as of 14:12, 8 April 2023

space satisfying the Urysohn separation axiom

A topological space in which any two distinct points have neighbourhoods with disjoint closure.

Comments

Regular $T_1$-spaces (cf. Regular space; Separation axiom) are Urysohn, and Urysohn spaces are Hausdorff (cf. Hausdorff space). Neither implication is reversible.

References

[1] P.S. Aleksandrov, P. Urysohn, "Mémoire sur les espaces topologiques compacts" , Koninkl. Nederl. Akad. Wetensch. , Amsterdam (1929)
[2] A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) pp. 125 (Translated from Russian)
[a1] R. Engelking, "General topology" , Heldermann (1989)
How to Cite This Entry:
Urysohn space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Urysohn_space&oldid=32855
This article was adapted from an original article by B.A. Efimov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article