Namespaces
Variants
Actions

Difference between revisions of "Indefinite integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
m
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
{{TEX|done}}
 
{{TEX|done}}
 +
 +
{{MSC|28}}
 +
 
An integral
 
An integral
  
$$\int f(x)dx\tag{*}$$
+
$$\int f(x)\,dx\tag{*}\label{*}$$
  
of a given function of a single variable defined on some interval. It is the collection of all primitives of the given function on this interval. If $f$ is defined on an interval $\Delta$ of the real axis and $F$ is any primitive of it on $\Delta$, that is, $F'(x)=f(x)$ for all $x\in\Delta$, then any other primitive of $f$ on $\Delta$ is of the form $F+C$, where $C$ is a constant. Consequently, the indefinite integral \ref{*} consists of all functions of the form $F+C$.
+
of a given function of a single variable defined on some interval. It is the collection of all [[primitive function]]s of the given function on this interval. If $f$ is defined on an interval $\Delta$ of the real axis and $F$ is any primitive of it on $\Delta$, that is, $F'(x)=f(x)$ for all $x\in\Delta$, then any other primitive of $f$ on $\Delta$ is of the form $F+C$, where $C$ is a constant. Consequently, the indefinite integral \eqref{*} consists of all functions of the form $F+C$.
  
 
The indefinite Lebesgue integral of a summable function on $[a,b]$ is the collection of all functions of the form
 
The indefinite Lebesgue integral of a summable function on $[a,b]$ is the collection of all functions of the form
  
$$F(x)=\int\limits_a^xf(t)dt+C.$$
+
$$F(x)=\int\limits_a^xf(t)\,dt+C.$$
  
 
In this case the equality $F'(x)=f(x)$ holds, generally speaking, only almost-everywhere on $[a,b]$.
 
In this case the equality $F'(x)=f(x)$ holds, generally speaking, only almost-everywhere on $[a,b]$.
Line 14: Line 17:
 
An indefinite Lebesgue integral (in the wide sense) of a summable function $f$ defined on a measure space $X$ with measure $\mu$ is the name for the set function
 
An indefinite Lebesgue integral (in the wide sense) of a summable function $f$ defined on a measure space $X$ with measure $\mu$ is the name for the set function
  
$$\int\limits_Ef(x)d_\mu x,$$
+
$$\int\limits_Ef(x)\,d_\mu x,$$
  
 
defined on the collection of all measurable sets $E$ in $X$.
 
defined on the collection of all measurable sets $E$ in $X$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.N. Kolmogorov,  S.V. Fomin,  "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock  (1957–1961)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.M. Nikol'skii,  "A course of mathematical analysis" , '''1–2''' , MIR  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.A. Il'in,  E.G. Poznyak,  "Fundamentals of mathematical analysis" , '''1–2''' , MIR  (1982)  (Translated from Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  A.N. Kolmogorov,  S.V. Fomin,  "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock  (1957–1961)  (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  S.M. Nikol'skii,  "A course of mathematical analysis" , '''1–2''' , MIR  (1977)  (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  V.A. Il'in,  E.G. Poznyak,  "Fundamentals of mathematical analysis" , '''1–2''' , MIR  (1982)  (Translated from Russian)</TD></TR>
 +
</table>
  
  

Latest revision as of 20:53, 1 January 2019


2020 Mathematics Subject Classification: Primary: 28-XX [MSN][ZBL]

An integral

$$\int f(x)\,dx\tag{*}\label{*}$$

of a given function of a single variable defined on some interval. It is the collection of all primitive functions of the given function on this interval. If $f$ is defined on an interval $\Delta$ of the real axis and $F$ is any primitive of it on $\Delta$, that is, $F'(x)=f(x)$ for all $x\in\Delta$, then any other primitive of $f$ on $\Delta$ is of the form $F+C$, where $C$ is a constant. Consequently, the indefinite integral \eqref{*} consists of all functions of the form $F+C$.

The indefinite Lebesgue integral of a summable function on $[a,b]$ is the collection of all functions of the form

$$F(x)=\int\limits_a^xf(t)\,dt+C.$$

In this case the equality $F'(x)=f(x)$ holds, generally speaking, only almost-everywhere on $[a,b]$.

An indefinite Lebesgue integral (in the wide sense) of a summable function $f$ defined on a measure space $X$ with measure $\mu$ is the name for the set function

$$\int\limits_Ef(x)\,d_\mu x,$$

defined on the collection of all measurable sets $E$ in $X$.

References

[1] A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) (Translated from Russian)
[2] S.M. Nikol'skii, "A course of mathematical analysis" , 1–2 , MIR (1977) (Translated from Russian)
[3] V.A. Il'in, E.G. Poznyak, "Fundamentals of mathematical analysis" , 1–2 , MIR (1982) (Translated from Russian)


Comments

For additional references see Improper integral; Integral.

How to Cite This Entry:
Indefinite integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Indefinite_integral&oldid=32817
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article