Difference between revisions of "Simply-periodic function"
(TeX) |
(Category:Functions of a complex variable) |
||
Line 2: | Line 2: | ||
''simple periodic function'' | ''simple periodic function'' | ||
− | A [[ | + | A [[periodic function]] $f(z)$ of the complex variable $z$ all periods $p$ of which are integer multiples of a single unique fundamental, or primitive, period $2\omega\neq0$, i.e. $p=2n\omega$ ($n\in\mathbf Z$). For example, the [[exponential function]] $e^z$ is an entire simply-periodic function with fundamental period $2\omega=2\pi i$, and the [[trigonometric functions]] $\tan z$ and $\operatorname{cotan}z$ are meromorphic simply-periodic functions with fundamental period $2\omega=\pi$. |
Line 8: | Line 8: | ||
====Comments==== | ====Comments==== | ||
More generally, a simply-periodic function on a linear space $X$ is a periodic function whose periods are integer multiples of some basic period $2\omega\in X$. A non-constant continuous periodic function of a real variable is necessarily simply-periodic. | More generally, a simply-periodic function on a linear space $X$ is a periodic function whose periods are integer multiples of some basic period $2\omega\in X$. A non-constant continuous periodic function of a real variable is necessarily simply-periodic. | ||
+ | |||
+ | See also [[Double-periodic function]] | ||
+ | |||
+ | [[Category:Functions of a complex variable]] |
Latest revision as of 18:55, 17 October 2014
simple periodic function
A periodic function $f(z)$ of the complex variable $z$ all periods $p$ of which are integer multiples of a single unique fundamental, or primitive, period $2\omega\neq0$, i.e. $p=2n\omega$ ($n\in\mathbf Z$). For example, the exponential function $e^z$ is an entire simply-periodic function with fundamental period $2\omega=2\pi i$, and the trigonometric functions $\tan z$ and $\operatorname{cotan}z$ are meromorphic simply-periodic functions with fundamental period $2\omega=\pi$.
Comments
More generally, a simply-periodic function on a linear space $X$ is a periodic function whose periods are integer multiples of some basic period $2\omega\in X$. A non-constant continuous periodic function of a real variable is necessarily simply-periodic.
See also Double-periodic function
Simply-periodic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Simply-periodic_function&oldid=31936